- 2021-06-30 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学专题复习练习第2讲 同角三角函数的基本关系与诱导公式
第2讲 同角三角函数的基本关系与诱导公式 一、选择题 1. cos=( ) A. B. C.- D.- 解析 cos=cos=cos=cos=-cos=-,故选C. 答案 C 2.已知tan θ=2,则sin2θ+sin θcos θ-2cos2θ= ( ). A.- B. C.- D. 解析 由于tan θ=2,则sin2θ+sin θcos θ-2cos2θ====. 答案 D 3.若=,则tan 2α= ( ). A.- B. C.- D. 解析 由=,得=,所以tan α=-3,所以tan 2α==. 答案 B 4.已知f(cos x)=cos 3x,则f(sin 30°)的值为( ). A.0 B.1 C.-1 D. 解析 ∵f(cos x)=cos 3x, ∴f(sin 30°)=f(cos 60°)=cos 180°=-1. 答案 C 5.若sin θ,cos θ是方程4x2+2mx+m=0的两根,则m的值为( ). A.1+ B.1- C.1± D.-1- 解析 由题意知:sin θ+cos θ=-,sin θcos θ=, 又(sin θ+cos θ)2=1+2sin θcos θ, ∴=1+, 解得:m=1±,又Δ=4m2-16m≥0, ∴m≤0或m≥4,∴m=1-. 答案 B 6.若Sn=sin +sin +…+sin (n∈N*),则在S1,S2,…,S100中,正数的个数是 ( ). A.16 B.72 C.86 D.100 解析 由sin =-sin ,sin =-sin ,…,sin =-sin ,sin =sin =0,所以S13=S14=0. 同理S27=S28=S41=S42=S55=S56=S69=S70=S83=S84=S97=S98=0,共14个,所以在S1,S2,…,S100中,其余各项均大于0,个数是100-14=86(个).故选C. 答案 C 二、填空题 7.已知cosα=-,且α是第二象限的角,则tan(2π-α)=________. 解析 由α是第二象限的角,得sinα==,tanα==-,则tan(2π-α)=-tanα=. 答案 8.已知α为第二象限角,则cos α+sin α=________. 解析 原式=cos α+sin α =cos α+sin α =cos α+sin α=0. 答案 0 9.已知sin α=+cos α,且α∈,则的值为________. 解析 依题意得sin α-cos α=,又(sin α+cos α)2+(sin α-cos α)2=2,即(sin α+cos α)2+2=2,故(sin α+cos α)2=;又α∈,因此有sin α+cos α=,所以==-(sin α+cos α)=-. 答案 - 10. f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β均为非零实数),若f(2 012)=6,则f(2 013)=________. 解析 f(2 012)=asin(2 012π+α)+bcos(2 012π+β)+4=asin α+bcos β+4=6,∴asin α+bcos β=2,∴f(2 013)=asin(2 013π+α)+bcos(2 013π+β)+4=-asin α-bcos β+4=2. 答案 2 三、解答题 11.已知=3+2, 求cos2(π-α)+sin ·cos +2sin2(α-π)的值. 解析 由已知得=3+2, ∴tan α===. ∴cos2(π-α)+sin cos +2sin2(α-π) =cos2α+(-cos α)(-sin α)+2sin2α =cos2α+sin αcos α+2sin2α = = ==. 12.已知sin(3π+α)=2sin,求下列各式的值: (1);(2)sin2α+sin 2α. 解 法一 由sin(3π+α)=2sin,得tan α=2. (1)原式===-. (2)原式=sin2α+2sin αcos α= ==. 法二 由已知得sin α=2cos α. (1)原式==-. (2)原式===. 13.是否存在α∈,β∈(0,π),使等式sin(3π-α)=cos,cos(-α)=-cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由. 解 假设存在角α,β满足条件, 则由已知条件可得 由①2+②2,得sin2α+3cos2α=2. ∴sin2α=,∴sin α=±.∵α∈,∴α=±. 当α=时,由②式知cos β=, 又β∈(0,π),∴β=,此时①式成立; 当α=-时,由②式知cos β=, 又β∈(0,π),∴β=,此时①式不成立,故舍去. ∴存在α=,β=满足条件. 14.已知函数f(x)=tan. (1)求f(x)的定义域与最小正周期; (2)设α∈,若f=2cos 2α,求α的大小. 解 (1)由2x+≠+kπ,k∈Z,得x≠+,k∈Z.所以f(x)的定义域为,f(x)的最小正周期为. (2)由f=2cos 2α,得tan=2cos 2α, =2(cos2α-sin2α), 整理得=2(cos α+sin α)(cos α-sin α). 因为α∈,所以sin α+cos α≠0. 因此(cos α-sin α)2=,即sin 2α=. 由α∈,得2α∈.所以2α=,即α=.查看更多