- 2021-06-24 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020版高中数学 第3章 不等式 3.1.1 不等关系与不等式
3.1.1 不等关系与不等式 3.1.2 不等式的性质 1.了解不等式的性质.(重点) 2.能用不等式(组)表示实际问题中的不等关系.(难点) [基础·初探] 教材整理1 不等关系与不等式 阅读教材P61~P62例1,完成下列问题. 1.不等式的定义所含的两个要点 (1)不等符号<,≤,>,≥或≠. (2)所表示的关系是不等关系. 2.不等式中的文字语言与符号语言之间的转换 大于 大于 等于 小于 小于 等于 至多 至少 不少于 不多于 > ≥ < ≤ ≤ ≥ ≥ ≤ 3.比较两实数a,b大小的依据 判断(正确的打“√”,错误的打“×”) (1)某隧道入口竖立着“限高4.5米”的警示牌,是指示司机要安全通过隧道,应使车载货物高度h满足关系为h≤4.5.( ) 9 (2)用不等式表示“a与b的差是非负数”为a-b>0.( ) (3)不等式x≥2的含义是指x不小于2.( ) (4)若a2或x=2,即x不小于2,故此说法是正确的. (4)√.因为不等式a≤b表示ab,b>c⇒a>c 性质3(可加性) a>b⇒a+c>b+c 推论1 a+b>c⇒a>c-b 推论2 a>b,c>d⇒a+c>b+d 性质4 (可乘性) a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc 推论1 a>b>0,c>d>0⇒ac>bd 推论2 a>b>0⇒ an>bn(n∈N+,n>1) 推论3 a>b>0⇒>(n∈N+,n>1) 用不等号填空: (1)若a>b,则ac2________bc2. (2)若a+b>0,b<0,则b________a. (3)若a>b,c查看更多