2018年上海市高考数学试卷

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018年上海市高考数学试卷

‎2018年上海市高考数学试卷 ‎ ‎ 一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.‎ ‎1.(4.00分)行列式的值为   .‎ ‎2.(4.00分)双曲线﹣y2=1的渐近线方程为   .‎ ‎3.(4.00分)在(1+x)7的二项展开式中,x2项的系数为   (结果用数值表示).‎ ‎4.(4.00分)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=   .‎ ‎5.(4.00分)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|=   .‎ ‎6.(4.00分)记等差数列{an}的前n项和为Sn,若a3=0,a6+a7=14,则S7=   .‎ ‎7.(5.00分)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=   .‎ ‎8.(5.00分)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为   .‎ ‎9.(5.00分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是   (结果用最简分数表示).‎ ‎10.(5.00分)设等比数列{an}的通项公式为an=qn﹣1(n∈N*),前n项和为Sn.若=,则q=   .‎ ‎11.(5.00分)已知常数a>0,函数f(x)=的图象经过点P(p,‎ ‎),Q(q,).若2p+q=36pq,则a=   .‎ ‎12.(5.00分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为   .‎ ‎ ‎ 二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.‎ ‎13.(5.00分)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为(  )‎ A.2 B.2 C.2 D.4‎ ‎14.(5.00分)已知a∈R,则“a>1”是“<1”的(  )‎ A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件 ‎15.(5.00分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是(  )‎ A.4 B.8 C.12 D.16‎ ‎16.(5.00分)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是(  )‎ A. B. C. D.0‎ ‎ ‎ 三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.‎ ‎17.(14.00分)已知圆锥的顶点为P,底面圆心为O,半径为2.‎ ‎(1)设圆锥的母线长为4,求圆锥的体积;‎ ‎(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.‎ ‎18.(14.00分)设常数a∈R,函数f(x)=asin2x+2cos2x.‎ ‎(1)若f(x)为偶函数,求a的值;‎ ‎(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.‎ ‎19.(14.00分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为 f(x)=(单位:分钟),‎ 而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:‎ ‎(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?‎ ‎(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.‎ ‎20.(16.00分)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.‎ ‎(1)用t表示点B到点F的距离;‎ ‎(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;‎ ‎(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.‎ ‎21.(18.00分)给定无穷数列{an},若无穷数列{bn}满足:对任意n∈N*,都有|bn﹣an|≤1,则称{bn}与{an}“接近”.‎ ‎(1)设{an}是首项为1,公比为的等比数列,bn=an+1+1,n∈N*,判断数列{bn}是否与{an}接近,并说明理由;‎ ‎(2)设数列{an}的前四项为:a1=1,a2=2,a3=4,a4=8,{bn}是一个与{an}接近的数列,记集合M={x|x=bi,i=1,2,3,4},求M中元素的个数m;‎ ‎(3)已知{an}是公差为d的等差数列,若存在数列{bn}满足:{bn}与{an}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.‎ ‎ ‎ ‎2018年上海市高考数学试卷 参考答案与试题解析 ‎ ‎ 一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.‎ ‎1.(4.00分)行列式的值为 18 .‎ ‎【分析】直接利用行列式的定义,计算求解即可.‎ ‎【解答】解:行列式=4×5﹣2×1=18.‎ 故答案为:18.‎ ‎【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.‎ ‎ ‎ ‎2.(4.00分)双曲线﹣y2=1的渐近线方程为 ± .‎ ‎【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.‎ ‎【解答】解:∵双曲线的a=2,b=1,焦点在x轴上 ‎ 而双曲线的渐近线方程为y=±‎ ‎∴双曲线的渐近线方程为y=±‎ 故答案为:y=±‎ ‎【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想 ‎ ‎ ‎3.(4.00分)在(1+x)7的二项展开式中,x2项的系数为 21 (结果用数值表示).‎ ‎【分析】利用二项式展开式的通项公式求得展开式中x2的系数.‎ ‎【解答】解:二项式(1+x)7展开式的通项公式为 Tr+1=•xr,‎ 令r=2,得展开式中x2的系数为=21.‎ 故答案为:21.‎ ‎【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.‎ ‎ ‎ ‎4.(4.00分)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a= 7 .‎ ‎【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.‎ ‎【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).‎ f(x)的反函数的图象经过点(3,1),‎ ‎∴函数f(x)=1og2(x+a)的图象经过点(1,3),‎ ‎∴log2(1+a)=3,‎ 解得a=7.‎ 故答案为:7.‎ ‎【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.‎ ‎ ‎ ‎5.(4.00分)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5 .‎ ‎【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.‎ ‎【解答】解:由(1+i)z=1﹣7i,‎ 得,‎ 则|z|=.‎ 故答案为:5.‎ ‎【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.‎ ‎ ‎ ‎6.(4.00分)记等差数列{an}的前n项和为Sn,若a3=0,a6+a7=14,则S7= 14 .‎ ‎【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.‎ ‎【解答】解:∵等差数列{an}的前n项和为Sn,a3=0,a6+a7=14,‎ ‎∴,‎ 解得a1=﹣4,d=2,‎ ‎∴S7=7a1+=﹣28+42=14.‎ 故答案为:14.‎ ‎【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.‎ ‎ ‎ ‎7.(5.00分)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α= ﹣1 .‎ ‎【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.‎ ‎【解答】解:∵α∈{﹣2,﹣1,﹣,1,2,3},‎ 幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,‎ ‎∴a是奇数,且a<0,‎ ‎∴a=﹣1.‎ 故答案为:﹣1.‎ ‎【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.‎ ‎ ‎ ‎8.(5.00分)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为 ﹣3 .‎ ‎【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.‎ ‎【解答】解:根据题意,设E(0,a),F(0,b);‎ ‎∴;‎ ‎∴a=b+2,或b=a+2;‎ 且;‎ ‎∴;‎ 当a=b+2时,;‎ ‎∵b2+2b﹣2的最小值为;‎ ‎∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.‎ 故答案为:﹣3.‎ ‎【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.‎ ‎ ‎ ‎9.(5.00分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是  (结果用最简分数表示).‎ ‎【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.‎ ‎【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,‎ 从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,‎ 所有的事件总数为:=10,‎ 这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,‎ 所以:这三个砝码的总质量为9克的概率是:=,‎ 故答案为:.‎ ‎【点评】本题考查古典概型的概率的求法,是基本知识的考查.‎ ‎ ‎ ‎10.(5.00分)设等比数列{an}的通项公式为an=qn﹣1(n∈N*),前n项和为Sn.若=,则q= 3 .‎ ‎【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.‎ ‎【解答】解:等比数列{an}的通项公式为a=qn﹣1(n∈N*),可得a1=1,‎ 因为=,所以数列的公比不是1,‎ ‎,an+1=qn.‎ 可得====,‎ 可得q=3.‎ 故答案为:3.‎ ‎【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.‎ ‎ ‎ ‎11.(5.00分)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a= 6 .‎ ‎【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.‎ ‎【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).‎ 则:,‎ 整理得:=1,‎ 解得:2p+q=a2pq,‎ 由于:2p+q=36pq,‎ 所以:a2=36,‎ 由于a>0,‎ 故:a=6.‎ 故答案为:6‎ ‎【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.‎ ‎ ‎ ‎12.(5.00分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为 + .‎ ‎【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.‎ ‎【解答】解:设A(x1,y1),B(x2,y2),‎ ‎=(x1,y1),=(x2,y2),‎ 由x12+y12=1,x22+y22=1,x1x2+y1y2=,‎ 可得A,B两点在圆x2+y2=1上,‎ 且•=1×1×cos∠AOB=,‎ 即有∠AOB=60°,‎ 即三角形OAB为等边三角形,‎ AB=1,‎ ‎+的几何意义为点A,B两点 到直线x+y﹣1=0的距离d1与d2之和,‎ 显然A,B在第三象限,AB所在直线与直线x+y=1平行,‎ 可设AB:x+y+t=0,(t>0),‎ 由圆心O到直线AB的距离d=,‎ 可得2=1,解得t=,‎ 即有两平行线的距离为=,‎ 即+的最大值为+,‎ 故答案为:+.‎ ‎【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.‎ ‎ ‎ 二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.‎ ‎13.(5.00分)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为(  )‎ A.2 B.2 C.2 D.4‎ ‎【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.‎ ‎【解答】解:椭圆=1的焦点坐标在x轴,a=,‎ P是椭圆 ‎=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.‎ 故选:C.‎ ‎【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.‎ ‎ ‎ ‎14.(5.00分)已知a∈R,则“a>1”是“<1”的(  )‎ A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件 ‎【分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.‎ ‎【解答】解:a∈R,则“a>1”⇒“”,‎ ‎“”⇒“a>1或a<0”,‎ ‎∴“a>1”是“”的充分非必要条件.‎ 故选:A.‎ ‎【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.‎ ‎ ‎ ‎15.(5.00分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是(  )‎ A.4 B.8 C.12 D.16‎ ‎【分析】根据新定义和正六边形的性质可得答案.‎ ‎【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×6=12,‎ 当A1ACC1为底面矩形,有2个满足题意,‎ 当A1AEE1为底面矩形,有2个满足题意,‎ 故有12+2+2=16‎ 故选:D.‎ ‎【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.‎ ‎ ‎ ‎16.(5.00分)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是(  )‎ A. B. C. D.0‎ ‎【分析】直接利用定义函数的应用求出结果.‎ ‎【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.‎ 我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.‎ 故选:B.‎ ‎【点评】本题考查的知识要点:定义性函数的应用.‎ ‎ ‎ 三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.‎ ‎17.(14.00分)已知圆锥的顶点为P,底面圆心为O,半径为2.‎ ‎(1)设圆锥的母线长为4,求圆锥的体积;‎ ‎(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.‎ ‎【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.‎ ‎(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.‎ ‎【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,‎ ‎∴圆锥的体积V==‎ ‎=.‎ ‎(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,‎ M为线段AB的中点,‎ ‎∴以O为原点,OA为x轴,OB为y轴,OP为z轴,‎ 建立空间直角坐标系,‎ P(0,0,4),A(2,0,0),B(0,2,0),‎ M(1,1,0),O(0,0,0),‎ ‎=(1,1,﹣4),=(0,2,0),‎ 设异面直线PM与OB所成的角为θ,‎ 则cosθ===.‎ ‎∴θ=arccos.‎ ‎∴异面直线PM与OB所成的角的为arccos.‎ ‎【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.‎ ‎ ‎ ‎18.(14.00分)设常数a∈R,函数f(x)=asin2x+2cos2x.‎ ‎(1)若f(x)为偶函数,求a的值;‎ ‎(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.‎ ‎【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,‎ ‎(2)先求出a的值,再根据三角形函数的性质即可求出.‎ ‎【解答】解:(1)∵f(x)=asin2x+2cos2x,‎ ‎∴f(﹣x)=﹣asin2x+2cos2x,‎ ‎∵f(x)为偶函数,‎ ‎∴f(﹣x)=f(x),‎ ‎∴﹣asin2x+2cos2x=asin2x+2cos2x,‎ ‎∴2asin2x=0,‎ ‎∴a=0;‎ ‎(2)∵f()=+1,‎ ‎∴asin+2cos2()=a+1=+1,‎ ‎∴a=,‎ ‎∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,‎ ‎∵f(x)=1﹣,‎ ‎∴2sin(2x+)+1=1﹣,‎ ‎∴sin(2x+)=﹣,‎ ‎∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,‎ ‎∴x=﹣π+kπ,或x=π+kπ,k∈Z,‎ ‎∵x∈[﹣π,π],‎ ‎∴x=或x=或x=﹣或x=﹣‎ ‎【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.‎ ‎ ‎ ‎19.(14.00分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为 f(x)=(单位:分钟),‎ 而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:‎ ‎(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?‎ ‎(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.‎ ‎【分析】(1)由题意知求出f(x)>40时x的取值范围即可;‎ ‎(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.‎ ‎【解答】解;(1)由题意知,当30<x<100时,‎ f(x)=2x+﹣90>40,‎ 即x2﹣65x+900>0,‎ 解得x<20或x>45,‎ ‎∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;‎ ‎(2)当0<x≤30时,‎ g(x)=30•x%+40(1﹣x%)=40﹣;‎ 当30<x<100时,‎ g(x)=(2x+﹣90)•x%+40(1﹣x%)=﹣x+58;‎ ‎∴g(x)=;‎ 当0<x<32.5时,g(x)单调递减;‎ 当32.5<x<100时,g(x)单调递增;‎ 说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;‎ 有大于32.5%的人自驾时,人均通勤时间是递增的;‎ 当自驾人数为32.5%时,人均通勤时间最少.‎ ‎【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.‎ ‎ ‎ ‎20.(16.00分)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.‎ ‎(1)用t表示点B到点F的距离;‎ ‎(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;‎ ‎(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.‎ ‎【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;‎ 方法二:根据抛物线的定义,即可求得|BF|;‎ ‎(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;‎ ‎(3)设P及E点坐标,根据直线kPF•kFQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.‎ ‎【解答】解:(1)方法一:由题意可知:设B(t,2t),‎ 则|BF|==t+2,‎ ‎∴|BF|=t+2;‎ 方法二:由题意可知:设B(t,2t),‎ 由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;‎ ‎(2)F(2,0),|FQ|=2,t=3,则|FA|=1,‎ ‎∴|AQ|=,∴Q(3,),设OQ的中点D,‎ D(,),‎ kQF==﹣,则直线PF方程:y=﹣(x﹣2),‎ 联立,整理得:3x2﹣20x+12=0,‎ 解得:x=,x=6(舍去),‎ ‎∴△AQP的面积S=××=;‎ ‎(3)存在,设P(,y),E(,m),则kPF==,kFQ=,‎ 直线QF方程为y=(x﹣2),∴yQ=(8﹣2)=,Q(8,‎ ‎),‎ 根据+=,则E(+6,),‎ ‎∴()2=8(+6),解得:y2=,‎ ‎∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).‎ ‎【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.‎ ‎ ‎ ‎21.(18.00分)给定无穷数列{an},若无穷数列{bn}满足:对任意n∈N*,都有|bn﹣an|≤1,则称{bn}与{an}“接近”.‎ ‎(1)设{an}是首项为1,公比为的等比数列,bn=an+1+1,n∈N*,判断数列{bn}是否与{an}接近,并说明理由;‎ ‎(2)设数列{an}的前四项为:a1=1,a2=2,a3=4,a4=8,{bn}是一个与{an}接近的数列,记集合M={x|x=bi,i=1,2,3,4},求M中元素的个数m;‎ ‎(3)已知{an}是公差为d的等差数列,若存在数列{bn}满足:{bn}与{an}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200‎ 中至少有100个为正数,求d的取值范围.‎ ‎【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;‎ ‎(2)由新定义可得an﹣1≤bn≤an+1,求得bi,i=1,2,3,4的范围,即可得到所求个数;‎ ‎(3)运用等差数列的通项公式可得an,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.‎ ‎【解答】解:(1)数列{bn}与{an}接近.‎ 理由:{an}是首项为1,公比为的等比数列,‎ 可得an=,bn=an+1+1=+1,‎ 则|bn﹣an|=|+1﹣|=1﹣<1,n∈N*,‎ 可得数列{bn}与{an}接近;‎ ‎(2){bn}是一个与{an}接近的数列,‎ 可得an﹣1≤bn≤an+1,‎ 数列{an}的前四项为:a1=1,a2=2,a3=4,a4=8,‎ 可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],‎ 可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,‎ 集合M={x|x=bi,i=1,2,3,4},‎ M中元素的个数m=3或4;‎ ‎(3){an}是公差为d的等差数列,若存在数列{bn}满足:{bn}与{an}接近,‎ 可得an=a1+(n﹣1)d,‎ ‎①若d>0,取bn=an,可得bn+1﹣bn=an+1﹣an=d>0,‎ 则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;‎ ‎②若d=0,取bn=a1﹣,则|bn﹣an|=|a1﹣﹣a1|=<1,n∈N*,‎ 可得bn+1﹣bn=﹣>0,‎ 则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;‎ ‎③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,‎ 则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,‎ 则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;‎ ‎④若d≤﹣2,若存在数列{bn}满足:{bn}与{an}接近,‎ 即为an﹣1≤bn≤an+1,an+1﹣1≤bn+1≤an+1+1,‎ 可得bn+1﹣bn≤an+1+1﹣(an﹣1)=2+d≤0,‎ b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.‎ 综上可得,d的范围是(﹣2,+∞).‎ ‎【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.‎ ‎ ‎
查看更多

相关文章

您可能关注的文档