- 2021-06-24 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高中数学北师大版新教材必修一课时素养评价: 二十三 函数奇偶性的应用
温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。 课时素养评价 二十三 函数奇偶性的应用 (15分钟 30分) 1.已知函数y=f(x)为奇函数,且当x>0时,f(x)=x2-2x+3,则当x<0时,f(x)的解析式是( ) A.f(x)=-x2+2x-3 B.f(x)=-x2-2x-3 C.f(x)=x2-2x+3 D.f(x)=-x2-2x+3 【解析】选B.若x<0,则-x>0,因为当x>0时,f(x)=x2-2x+3,所以f(-x)=x2+2x+3,因为函数f(x)是奇函数,所以f(-x)=x2+2x+3=-f(x),所以f(x)=-x2-2x-3,所以x<0时,f(x)=-x2-2x-3. 2.已知函数f(x)=(m-2)x2+(m2-4)x+m是偶函数,g(x)=-x2-mx在(-∞,0)内单调递增,则实数m= ( ) A.-2 B.±2 C.0 D.2 【解析】选A.由函数f(x)=(m-2)x2+(m2-4)x+m是偶函数,得m2-4=0. 解得m=±2.又当m=2时,g(x)=-x2-2x,该函数在(-∞,0)内不单调递增,故m≠2.当m=-2时,g(x)=-x2+2x,该函数在(-∞,0)内单调递增,故m=-2. 3.设f(x)是R上的偶函数,且在(0,+∞)上单调递减,若x1<0且x1+x2>0,则 ( ) A.f(-x1)>f(-x2) B.f(-x1)=f(-x2) C.f(-x1)查看更多