- 2021-06-24 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
河南省信阳市2021届高三上学期第一次教学质量检测试题 数学(理) Word版含答案
www.ks5u.com ★2020年10月15日 2020-2021学年普通高中高三第一次教学质量检测. 数学(理科) 本试卷分第I卷(选择题)和第II卷(非选择题)两部分。考生作答时,将答案答在答题卡上,在本试卷上答题无效。考试结束后,将本试卷和答题卡一并交回。 注意事项: 1.答题前,考生务必将本人的姓名、准考证号等考生信息填写在答题卡上,并用2B铅笔将准考证号填涂在相应位置。 2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色墨水签字笔书写,字体工整、笔迹清楚。 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。 4.保持卡面清洁,不折叠,不破损。 第I卷 一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1.若集合A={x||x-2|≤1},B={x|y=},则A∩B等于 A.[-1,2] B.(2,3] C.[1,2) D.[1,3) 2.若函数f(x)=(m2-2m-2)xm-1是幂函数,则m等于 A.-1 B.3或-1 C.1± D.3 3.已知[x]表示不超过实数x的最大整数,g(x)=[x]为取整函数,x0是函数f(x)=lnx+x-4的零点,则g(x0)等于 A.4 B.5 C.2 D.3 4.近年来,随着“一带一路”倡议的推进,中国与沿线国家旅游合作越来越密切,中国到“一带一路”沿线国家的游客人数也越来越多,如图是2013-2018年中国到“一带一路”沿线国家的游客人次情况,则下列说法正确的是 - 9 - ①2013-2018年中国到“一带一路”沿线国家的游客人次逐年增加 ②2013-2018年这6年中,2014年中国到“一带一路”沿线国家的游客人次增幅最小 ③2016-2018年这3年中,中国到“一带一路”沿线国家的游客人次每年的增幅基本持平 A.①②③ B.②③ C.①② D.③ 5.已知命题p:对任意x∈R,总有2x>x2;q:“ab>4”是“a>2,b>2”的充分不必要条件,则下列命题为真命题的是 A.p∧q B.p∧q C.p∧q D.p∧q 6.在△ABC中,∠ABC=,AB=,BC=3,则sin∠BAC等于 A. B. C. D. 7.我国著名数学家华罗庚先生曾说图像数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休。在数学的学习和研究中,常用函数图像来研究函数的性质,也常用函数的解析式来研究函数图像的特征,已知函数f(x)的图像如图所示,则函数f(x)的解析式可能是 A.f(x)=(4x+4-x)|x| B.f(x)=(4x-4-x)log2|x| C.f(x)=(4x+4-x) D.f(x)=(42+4-x)log2|x| 8.已知定义在R上的函数f(x)满足f(2-x)+f(x)=0,当x>1时,f(x)=x-2,则不等式f(x)<0的解集为 A.(1,2) B.(-∞,0) C.(-∞,0)∪(1,2) D.(0,2) 9.已知x=是函数f(x)=sin(ωx+φ)(0<ω<3,0<ω<π)的一个零点,将f(x)的图象向右平移 - 9 - 个单位长度,所得图象关于y轴对称,则函数f(x)的单调递增区间是 A.[-+2kπ,+2kπ],k∈Z B.[-+,+],k∈Z C.[-+2kπ,+2kπ],k∈Z D.[-+,-+],k∈Z 10.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax-a-x+2(a>0且a≠1),若g(2)=a,则函数f(x2+2x)的单调递增区间为 A.(-1,1) B.(-1,+∞) C.(1,+∞) D.(-∞,1) 11.已知函数f(x)=cosxsin2x,给出下列命题: ①x∈R,都有f(-x)=-f(x)成立; ②存在常数T≠0,x∈R恒有f(x+T)=f(x)成立; ③f(x)的最大值为; ④y=f(x)在[-,]上是增函数。 以上命题中正确的为 A.①②③④ B.②③ C.①②③ D.①②④ 12.已知定义在(-∞,0)∪(0,+∞)上的函数f(x),且f(1)=1,函数f(x+1)的图象关于点(-1,0)中心对称,对于任意x1,x2∈(0,+∞),x1≠x2,都有>0成立。则 f(x)≤的解集为 A.[-1,1] B.(-∞,-1]∪[1,+∞) C.(-∞,-1]∪(0,1] D.(-2019,2019) 第II卷 二、填空题:本大题共4个小题,每小题5分,共20分,把答案填在答题卡的相应位置。 13.的值为 。 14.已知cos(α+β)=,sinβ=,α,β均为锐角,则sinα的值是 。 15.若b>a>1且3logab+6logba=11,则a3+的最小值为 。 16.已知函数f(x)=,若关于x的方程2[f(x)]2+(1-2m)f(x)-m=0有5个不同的实数解,则实数m的取值范围是 。 三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤。 - 9 - 17.(本小题满分10分)已知命题p:关于x的不等式x2-4x+2m<0无解;命题q:指数函数f(x)=(2m-1)x是R上的增函数。 (I)若命题p∧q为真命题,求实数m的取值范围; (II)若满足p为假命题且q为真命题的实数m的取值范围是集合A,集合B={x|2t-1查看更多