2015年普通高等学校招生全国统一考试 数学 (江苏卷) 含答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2015年普通高等学校招生全国统一考试 数学 (江苏卷) 含答案

‎2015年普通高等学校招生全国统一考试(江苏卷)‎ 数学Ⅰ试题 参考公式 圆柱的体积公式:=Sh,其中S是圆柱的底面积,h为高。‎ 圆锥的体积公式: Sh,其中S是圆锥的底面积,h为高。‎ 一、 填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。‎ 1. 已知集合,,则集合中元素的个数为_______.‎ 2. 已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.‎ 3. 设复数z满足(i是虚数单位),则z的模为_______.‎ 4. 根据如图所示的伪代码,可知输出的结果S为________.‎ 5. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.‎ 6. 已知向量=(2,1),=(1,-2),若=(9,-8)(m,nR),则m-n的值为______.‎ 7. 不等式的解集为________.‎ ‎8.已知,,则的值为_______.‎ ‎9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 。‎ ‎10.在平面直角坐标系中,以点为圆心且与直线相切的所有圆中,半径最大的圆的标准方程为 。‎ ‎11.数列满足,且(),则数列前10项的和为 。‎ ‎12.在平面直角坐标系中,为双曲线右支上的一个动点。若点到直线 的距离大于c恒成立,则是实数c的最大值为 。‎ ‎13.已知函数,,则方程实根的个数为 。‎ ‎14.设向量,则的值为 。‎ 二、解答题 (本大题共6小题,共90分.请在答题卡制定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) ‎ ‎15.(本小题满分14分)‎ 在中,已知 ‎(1)求BC的长;‎ ‎(2)求的值。‎ ‎16.(本小题满分14分)‎ 如图,在直三棱柱中,已知.设的中点为D,‎ 求证:(1)‎ ‎(2)‎ 17. ‎(本小题满分14分)‎ 某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到的距离分别为5千米和40千米,点N到的距离分别为20千米和2.5千米,以 所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数(其中a,b为常数)模型.‎ ‎(I)求a,b的值;‎ ‎(II)设公路l与曲线C相切于P点,P的横坐标为t.‎ ‎ ①请写出公路l长度的函数解析式,并写出其定义域;‎ ‎ ②当t为何值时,公路l的长度最短?求出最短长度.‎ 17. ‎(本小题满分16分)‎ 如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且右焦点F到左准线l的距离为3.‎ (1) 求椭圆的标准方程;‎ (2) 过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.‎ ‎19.(本小题满分16分)‎ 已知函数。‎ ‎(1)试讨论的单调性;‎ ‎(2)若(实数c是与a无关的常数),当函数有三个不同的零点时,a的取值范围恰好是,求c的值。‎ ‎20.设是各项为正数且公差为d的等差数列 ‎(1)证明:依次构成等比数列;‎ ‎(2)是否存在,使得依次构成等比数列?并说明理由;‎ ‎(3)是否存在及正整数,使得依次构成等比数列?并说明理由。‎ 数学Ⅰ试题参考答案 一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.‎ ‎1.2 2.6 3. 4.7 5. 6.-3 7. 8.3 9. 10. 11. 12. 13.4 14. ‎ 二、解答题 ‎15.本小题主要考查余弦定理、正弦定理,同角三角函数关系与二倍角公式,考查运算求解能力.满分14分。‎ 解:‎ ‎(1)由余弦定理知,,‎ 所以.‎ ‎(2)由正弦定理知,,所以.‎ 因为,所以为锐角,则.‎ 因此.‎ ‎16.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分。‎ 证明:(1)由题意知,为的中点,‎ 又为的中点,因此.‎ 又因为平面,平面,‎ 所以平面.‎ ‎(2)因为棱柱是直三棱柱,‎ 所以平面.‎ 因为平面,所以.‎ 又因为,平面,平面,,‎ 所以平面.‎ 又因为平面,所以.‎ 因为,所以矩形是正方形,因此.‎ 因为,平面,,所以平面.‎ 又因为平面,所以.‎ ‎17. 本小题主要考查函数的概念、导数的几何意义及其应用,考查运用数学模型及数学知识分析和解决实际问题的能力.满分14分.‎ 解:(1)由题意知,点,的坐标分别为,.‎ 将其分别代入,得,‎ 解得.‎ ‎(2)①由(1)知,(),则点的坐标为,‎ 设在点处的切线交,轴分别于,点,,‎ 则的方程为,由此得,.‎ 故,.‎ ②设,则.令,解得.‎ 当时,,是减函数;‎ 当时,,是增函数.‎ 从而,当时,函数有极小值,也是最小值,所以,‎ 此时.‎ 答:当时,公路的长度最短,最短长度为千米.‎ ‎18.本小题主要考查椭圆的标准方程与几何性质、直线的方程、直线与直线、直线与椭圆的位置关系等基础知识,考查分析问题及运算求解能力.满分16分.‎ ‎(1)由题意,得且,‎ 解得,,则,‎ 所以椭圆的标准方程为.‎ ‎(2)当轴时,,又,不合题意.‎ 当与轴不垂直时,设直线的方程为,,,‎ 将的方程代入椭圆方程,得,‎ 则,的坐标为,且 ‎.‎ 若,则线段的垂直平分线为轴,与左准线平行,不合题意.‎ 从而,故直线的方程为,‎ 则点的坐标为,从而.‎ 因为,所以,解得.‎ 此时直线方程为或.‎ ‎19.本小题主要考查利用导数研究初等函数的单调性、极值及零点问题,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分。‎ 解:(1),令,解得,.‎ 当时,因为(),所以函数在上单调递增;‎ 当时,时,,时,,‎ 所以函数在,上单调递增,在上单调递减;‎ 当时,时,,时,,‎ 所以函数在,上单调递增,在上单调递减.‎ ‎(2)由(1)知,函数的两个极值为,,则函数有三个 零点等价于,从而或.‎ 又,所以当时,或当时,.‎ 设,因为函数有三个零点时,的取值范围恰好是 ‎,则在上,且在上均恒成立,‎ 从而,且,因此.‎ 此时,,‎ 因函数有三个零点,则有两个异于的不等实根,‎ 所以,且,‎ 解得.‎ 综上.‎ ‎20.本小题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识研究与解决问题的能力.满分16分.‎ 解:(1)证明:因为(,,)是同一个常数,‎ 所以,,,依次构成等比数列.‎ ‎(2)令,则,,,分别为,,,(,,).‎ 假设存在,,使得,,,依次构成等比数列,‎ 则,且.‎ 令,则,且(,),‎ 化简得(),且.将代入()式,‎ ‎,则.‎ 显然不是上面方程得解,矛盾,所以假设不成立,‎ 因此不存在,,使得,,,依次构成等比数列.‎ ‎(3)假设存在,及正整数,,使得,,,依次构成等比数列,‎ 则,且.‎ 分别在两个等式的两边同除以及,并令(,),‎ 则,且.‎ 将上述两个等式两边取对数,得,‎ 且.‎ 化简得,‎ 且.‎ 再将这两式相除,化简得().‎ 令,‎ 则.‎ 令,‎ 则.‎ 令,则.‎ 令,则.‎ 由,,‎ 知,,,在和上均单调.‎ 故只有唯一零点,即方程()只有唯一解,故假设不成立.‎ 所以不存在,及正整数,,使得,,,依次构成等比数列.‎ 数学Ⅱ(附加题)‎ 21、 ‎(选做题)本题包括A、B、C、D四小题,请选定其中两小题,并在相应的区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤。‎ A、 选修4-1:几何证明选讲(本小题满分10分)‎ 如图,在中,,的外接圆O的弦交于点D 求证:‎ B、选修4-2:矩阵与变换(本小题满分10分)‎ 已知,向量是矩阵的属于特征值的一个特征向量,求矩阵以及它的另一个特征值。‎ C.[选修4-4:坐标系与参数方程](本小题满分10分)‎ 已知圆C的极坐标方程为,求圆C的半径.‎ D.[选修4-5:不等式选讲](本小题满分10分)‎ 解不等式 ‎22.如图,在四棱锥中,已知平面,且四边形为直角梯形,,‎ ‎(1)求平面与平面所成二面角的余弦值;‎ ‎(2)点Q是线段BP上的动点,当直线CQ与DP所成角最小时,求线段BQ的长 ‎23.(本小题满分10分)‎ 已知集合,设,令表示集合所含元素的个数.‎ ‎(1)写出的值;‎ ‎(2)当时,写出的表达式,并用数学归纳法证明。‎ ‎21.[选做题] ‎ A.(选修4—1:几何证明选讲)‎ 本小题主要考查圆的基本性质和相似三角形等基础知识,考查推理论证能力.满分10分。‎ 证明:因为,所以.‎ 又因为,所以,‎ 又为公共角,可知∽.‎ A B C E D O ‎(第21——A题)‎ B[选修4—2:矩阵与变换]‎ 本小题主要考查矩阵的特征值与特征向量的概念等基础知识,考查运算求解能力.满分10分。‎ 解:由已知,得,即,‎ 则,即,所以矩阵.‎ 从而矩阵的特征多项式,所以矩阵的另一个特征值为.‎ C[选修4—4:坐标系与参数方程]‎ 本小题主要考查圆的极坐标方程、极坐标与直角坐标的互化等知识,考查运算求解能力.满分10分。‎ 解:以极坐标系的极点为平面直角坐标系的原点,以极轴为轴的正半轴,建立直角坐标系.‎ 圆的极坐标方程为,‎ 化简,得.‎ 则圆的直角坐标方程为,‎ 即,所以圆的半径为.‎ D[选修4—5:不等式选讲]‎ 本小题主要考查含绝对值不等式的解法,考查分类讨论的能力。满分10分。‎ 解:原不等式可化为或.‎ 解得或.‎ 综上,原不等式的解集是.‎ ‎22.【必做题】本小题主要考查空间向量、二面角和异面直线所成角等基础知识,考查运用空间向量解决问题的能力.满分10分。‎ 解:以为正交基底建立如图所示的空间直角坐标系,‎ 则各点的坐标为,,,.‎ ‎(1)因为平面,所以是平面的一个法向量,.‎ 因为,.‎ 设平面的法向量为,则,,即.‎ 令,解得,.‎ 所以是平面的一个法向量.‎ 从而,所以平面与平面所成二面角的余弦值为.‎ ‎(2)因为,设(),‎ 又,则,又,‎ 从而.‎ 设,,则.‎ 当且仅当,即时,的最大值为.‎ 因为在上是减函数,此时直线与所成角取得最小值.‎ 又因为,所以.‎ ‎23.【必做题】本题主要考查计数原理、数学归纳法等基础知识,考查探究能力及运用数学归纳法的推理论证能力,满分10分。‎ 解:(1).‎ ‎(2)当时,().‎ 下面用数学归纳法证明:‎ ①当时,,结论成立;‎ ②假设()时结论成立,那么时,在的基础上新增加的元素在,,中产生,分以下情形讨论:‎ ‎1)若,则,此时有 ‎,结论成立;‎ ‎2)若,则,此时有 ‎,结论成立;‎ ‎3)若,则,此时有 ‎,结论成立;‎ ‎4)若,则,此时有 ‎,结论成立;‎ ‎5)若,则,此时有 ‎,结论成立;‎ ‎6)若,则,此时有 ‎,结论成立.‎ 综上所述,结论对满足的自然数均成立.‎
查看更多

相关文章

您可能关注的文档