- 2021-05-13 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2009年湖南省张家界市初中毕业学业考试试卷及答案
张家界市2009年初中毕业学业考试试卷 数 学 考生注意:本学科试卷共三道大题25小题,满分120分,考试时量120分钟. 一、选择题(本大题共8小题,每小题3分,满分24分) 1.在实数0,,,0.74,中,无理数有( ) A.1个 B.2个 C.3个 D.4个 2.用计算器求值时,需相继按“2”,“”,“3”,“”键,若小红相继按“”,“2”,“”,“4”,“”键,则输出结果是( ) A.4 B.5 C.6 D.16 3.下图所示的几何体的主视图是( ) A. B. C. D. 4.不等式组的解集在数轴上表示为( ) 0 6 A. 0 6 B. 0 6 C. 0 6 D. 5.下列运算正确的是( ) A. B. C. D. 6.下列不是必然事件的是( ) A.两直线相交,对顶角相等 B.三角形的外心到三个顶点的距离相等 E D C A B 1 C.三角形任意两边之和大于第三边 D.两相似多边形面积的比等于周长的比 7.如图,,且,, 则的度数是( ) A. B. C. D. 8.为了预防“HINI”流感,某校对教室进行药熏消毒,药品燃烧时,室内每立方米的含药量与时间成正比;燃烧后,室内每立方米含药量与时间成反比,则消毒过程中室内每立方米含药量与时间的函数关系图象大致为( ) y t O A. y t O B. y t O C. y t O D. A E C D O B F 二、填空题(本大题共8小题,每小题3分,满分24分) 9.的绝对值为 . 10.如图,是的内切圆,与边 的切点分别为,若,则 . 11.张家界国际乡村音乐周活动中,来自中、日、美的三名音乐家准备在同一节目中依次演奏本国的民族音乐,若他们出场先后的机会是均等的,则按“美—日—中”顺序演奏的概率是 . 12.将函数的图象向上平移2个单位,得到函数 的图象. 13.分解因式 . 14.我市甲、乙两景点今年5月上旬每天接待游客的人数如图所示,甲、乙两景点日接待游客人数的方差大小关系为: . 人数 2800 2600 2400 2200 2000 1800 1 2 3 4 5 6 7 8 9 10 日 甲 乙 15.对于正实数作新定义:,在此定义下,若,则的值为 . A E D C F B 16.如图,等腰梯形中,,且,为上一点,与交于点,若,则 . 三、解答题(本题共9小题,满分72分) 17.(本小题6分) 计算 18.(本小题6分) D B A C 小明将一幅三角板如图所示摆放在一起,发现只要知道其中一边的长就可以求出其它各边的长,若已知,求的长. 19.先化简,后求值(本小题6分) 其中 20.(本小题6分) 在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,的顶点均在格点上,点的坐标为,请按要求画图与作答 (1) 把绕点旋转得. (2)把向右平移7个单位得. (3)与是否成中心对称,若是,找出对称中心,并写出其坐标. A C B P OP xP yP 21.列方程解应用题(本小题9分) “阳黄公路”开通后,从长沙到武陵源增加了一条新线路,新线路里程在原线路长360Km的基础上缩短了50Km,今有一旅游客车和小车同时从长沙出发前往武陵源,旅游客车走新线路,小车因故走原线路,中途停留6分钟.若小车速度是旅游客车速度的1.2倍,且两车同时到达武陵源,求两车的速度各是多少? 22.(本小题9分) 如图,有两个动点分别从正方形的两个顶点同时出发,以相同速度分别沿边和移动,问: (1)在移动过程中,与的位置和大小有何关系?并给予证明. (2)若和相交点,图中有多少对相似三角形?请把它们写出来. F D C E O B A 23.(本小题9分) 我市今年初三体育考试结束后,从某县3000名参考学生中抽取了100名考生成绩进行统计分析(满分100分,记分均为整数),得到如图所示的频数分布直方图,请你根据图形完成下列问题: (1)本次抽样的样本容量是 . (2)请补全频数分布直方图. (3)若80分以上(含80分)为优秀,请你据此.估算该县本次考试的优秀人数. 39.5 49.5 59.5 69.5 79.5 89.5 100 10 20 30 40 人数 分数 2 3 5 30 20 24.(本小题9分) 有若干个数,第1个数记为,第2个数记为,第3个数记为,第个数记为,若,从第二个数起,每个数都等于1与前面那个数的差的倒数. (1)分别求出的值. (2)计算的值. 25.(本小题12分) 在平面直角坐标系中,已知,,且以为直径的圆交轴的正半轴于点,过点作圆的切线交轴于点. (1)求过三点的抛物线的解析式 (2)求点的坐标 y x O C D B A 1 2 (3)设平行于轴的直线交抛物线于两点,问:是否存在以线段为直径的圆,恰好与轴相切?若存在,求出该圆的半径,若不存在,请说明理由? 张家界市2009年初中毕业学业考试数学试卷答案 一、选择题 1.B 2.A 3.B 4.A 5.C 6.D 7.C 8.A 二、填空题 9. 10. 11. 12. 13. 14. 15.16 16. 三、解答题 17.原式 3分 4分 5分 6分 18.解: 2分 ,则 4分 5分 6分 19.解:原式 2分 3分 4分 当时 6分 A C B P OP xP yP 20.注:每问2分 (3) 21.解:设旅游客车速度为Km/h,则小车为Km/h 1分 3分 解方程得 7分 经检验是方程的根,且合题意Km/时 8分 答:小车的平均速度为120Km/时 9分 22.解:(1)在正方形中,, 1分 (SAS) 2分 3分 4分 在中, 6分 (2)有5对相似三角形 7分 9分 23.(1)100 2分 (2) 5分 (3) 该县优秀人数约为1800人 9分 39.5 49.5 59.5 69.5 79.5 89.5 100 10 20 30 40 人数 分数 2 3 5 30 20 40 24.解:(1) 2分 4分 6分 (2) 9分 25.解:(1)令二次函数,则 1分 2分 过三点的抛物线的解析式为 4分 (2)以为直径的圆圆心坐标为 5分 为圆切线 6分 8分 坐标为 9分 (3)存在 10分 抛物线对称轴为 设满足条件的圆的半径为,则的坐标为或 而点在抛物线上 故在以为直径的圆,恰好与轴相切,该圆的半径为, 12分 注:解答题只要方法合理均可酌情给分查看更多