- 2021-05-10 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学专题练习应用题
中考应用题附参考答案 1.(2010年广西桂林适应训练)某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元. (1)求该同学看中的随身听和书包单价各是多少元? (2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),该同学只带了400元钱,他能否在这两家超市都可以买下看中的这两样商品?若两家都可以选择,在哪一家购买更省钱? 2.(2010年黑龙江一模)某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品? 设改进操作方法后每天生产件产品,则改进前每天生产件产品. 3.(2010广东省中考拟)A,B两地相距18km,甲工程队要在A,B两地间铺设一条输送天然气管道,乙工程队要在A,B两地间铺设一条输油管道,已知甲工程队每周比乙工程队少铺设1km,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙工程队每周各铺设多少管道? A M 45° 30° B 北 第4题 4.(2010年广东省中考拟)如图,是一个实际问题抽象的几何模型,已知A、B之间的距离为300m,求点M到直线AB的距离(精确到整数).并能设计一种测量方案? (参考数据:,) 5.(2010年湖南模拟)某花木园,计划在园中栽96棵桂花树,开工后每天比原计划多栽2棵,结果提前4天完成任务,问原计划每天栽多少棵桂花树. 6.(2010年厦门湖里模拟)某果品基地用汽车装运A、B、C三种不同品牌的水果到外地销售,按规定每辆汽车只能装同种水果,且必须装满,其中A、B、C三种水果的重量及利润按下表提供信息: 水果品牌 A B C 每辆汽车载重量(吨) 2.2 2.1 2 每吨水果可获利润(百元) 6 8 5 (1)若用7辆汽车装运A、C两种水果共15吨到甲地销售,如何安排汽车装运A、C两种水果? (2)计划用20辆汽车装运A、B、C三种不同水果共42吨到乙地销售(每种水果不少于2车),请你设计一种装运方案,可使果品基地获得最大利润,并求出最大利润. 7.(2010年杭州月考)某公司有型产品40件,型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表: 型利润 型利润 甲店 200 170 乙店 160 150 (1)设分配给甲店型产品件,这家公司卖出这100件产品的总利润为(元),求关于的函数关系式,并求出的取值范围; (2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来; (3)为了促销,公司决定仅对甲店型产品让利销售,每件让利元,但让利后型产品的每件利润仍高于甲店型产品的每件利润.甲店的型产品以及乙店的型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大? 8.(2010年河南中考模拟题1)某市一些村庄发生旱灾,市政府决定从甲、乙两水库向A、B两村调水,其中A村需水15万吨,B村需水13万吨,甲、乙两水库各可调出水14万吨。甲、乙两水库到A、B两村的路程和运费如下表: 路程(千米) 运费(元/万吨·千米) 甲水库 乙水库 甲水库 乙水库 A村 50 30 1200 1200 B村 60 45 1000 900 (1)如果设甲水库调往A村x万吨水,求所需总费用y(元)与x的函数关系式; (2)如果经过精心组织实行最佳方案,那么市政府需要准备的调运费用最低为多少? 9.(2010年河南中考模拟题2)某批发市场欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办海产品运输业务,已知运输路程为120千米,汽车和火车的速度分别是60千米/小时、100千米/小时,两货运公司的收费项目和收费标准如下表所示: 运输工具 运输费单价 (元/吨·千米) 冷藏费单价 (元/吨·小时) 过路费(元) 装卸及管理 费用(元) 汽车 2 5 200 0 火车 1.8 5 0 1600 (元/吨·千米表示每吨货物每千米的运费;元/吨·小时表示每吨货物每小时冷藏费) (1) 设批发商待运的海产品有x吨,汽车货运公司和铁路货运公司所要收取的费用分别为y1(元)和y2(元),分别写出y1、y2与x的关系式. (2) 若该批发商待运的海产品不少于30吨,为节省费用,他应该选哪个货运公司承担运输业务? ∴所运海产品不少于30吨且不足50吨应选汽车货运公司; 所运海产品刚好50吨,可任选一家; 所运海产品多于50吨,应选铁路货运公司 10.(2010年河南中考模拟题3)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案: (1)甲队单独完成这项工程刚好如期完成. (2)乙队单独完成这项工程要比规定日期多用6天. (3)若甲、乙两队合作3天,余下的工程由乙队单独做也正好如期完成. 试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由. 体积(m3/件) 质量(吨/件) A型商品 0.8 0.5 B型商品 2 1 11.(2010年河南中考模拟题5)宏远商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示: (1)已知一批商品有A、B两种型号,体积一共是20 m3 ,质量一共是10.5吨,求A、B两种型号商品各有几件? (2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6 m3,其收费方式有以下两种: ①按车收费:每辆车运输货物到目的地收费600元; ②按吨收费:每吨货物运输到目的地收费200元. 要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少?并求出该方式下的运费是多少元? 12.(2010年河南中考模拟题6)绿谷商场“家电下乡”指定型号冰箱,彩电的进价和售价如下表所示: 类别 冰箱 彩电 进价(元/台) 2320 1900 售价(元/台) 2420 1980 (1) 按国家政策,农民购买“家电下乡”产品享受售价13℅的政府补贴。农民田大伯到该商场购买了冰箱,彩电各一台,可以享受多少元的补贴? (2) 为满足农民需求,商场决定用不超过85000元采购冰箱,彩电共40台,且冰箱的数量不少于彩电数量的。 ① 请你帮助该商场设计相应的进货方案; ② 用哪种方案商场获得利润最大?(利润=售价-进价),最大利润是多少? 13.(2010年江苏省泰州市济川实验初中中考模拟题) 某企业信息部进行市场调研发现: 信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表: x(万元) 1 2 2.5 3 5 yA(万元) 0.4 0.8 1 1.2 2 信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元. (1)求出yB与x的函数关系式. (2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式. (3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少? 14.(2010年广州中考数学模拟试题(四))小明家想要在自己家的阳台上铺地砖,经测量后设计了如右图的图纸,黑色区域为宽度相等的一条“7”形的健身用鹅卵石小路,空白部分为地砖铺设区域. (1)要使铺地砖的面积为14平方米,那么小路的宽度应为多少? 第14题图 (2)小明家决定在阳台上铺设规格为80×80的地砖(即边长为80厘米的正方形),为了美观起见,工人师傅常采用下面的方法来估算至少需要的地砖数量:尽量保证整块地砖的铺设,边上有多余空隙的,空隙宽度小于地砖边长一半的,可将一块割成两块来铺设空隙处,大于一半的只能铺设一处一边长80厘米的矩形空隙,请你帮助工人师傅估算一下小明家至少需要多少块地砖? 15.(2010年河南省南阳市中考模拟数学试题)某市政府为响应党中央建设社会主义新农村和节约型社会的号召,决定资助部分农村地区修建一批沼气池,使农民用到经济、环保的沼气能源.红星村共有264户村民,村里得到34万元的政府资助款,不足部分由村民集资解决.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用的户数、修建用地情况见下表: 沼气池 修建费用(万元/个) 可供使用户数(户/个) 占地面积(m2/个) A型 3 20 48 B型 2 3 6 政府土地部门只批给该村沼气池修建用地708m2.若修建A型沼气池x个,修建两种型号沼气池共需费用y万元. (1)求y与x之间的函数关系式; (2)既不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种? (3)若平均每户村民集资700元,能否满足所需费用最少的修建方案? 答案:1.解:(1)解法一:设书包的单价为元,则随身听的单价为元 根据题意,得 解这个方程,得 答:该同学看中的随身听单价为360元,书包单价为92元。 (2)在超市A购买随身听与书包各一件需花费现金:(元) 因为,所以可以选择超市A购买。 在超市B可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购 买书包,总计共花费现金:360+2=362(元) 因为,所以也可以选择在超市B购买。 因为,所以在超市A购买更省钱 2.答案:依题意有. 整理得. 解得或. 时,,舍去. . 答:改进操作方法后每天生产60件产品. 3.解:设甲工程队铺设xkm/周,则乙工程队铺设(x+1)/周,依题意得: 解这个方程,得 x1=2,x2= -3. 经检验,x1=2,x2= -3都是原方程的解,但.x2= -3不符合题意,应舍去。 答:甲工程队铺设2km/周,则乙工程队铺设3km/周 4.解: 过点M作AB的垂线MN,垂足为N . A M 45° 30° B 北 第6题答案图 N ∵M位于B的北偏东45°方向上, ∴∠MBN = 45°,BN = MN. 又M位于A的北偏西30°方向上, ∴∠MAN=60°,AN = . ∵AB = 300,∴AN+NB = 300 . ∴. MN . 方案:利用三角函数知识或相似三角形或全等三角形知识,合理都可以给分(由于计算方式及取近似值时机不同有多个值,均不扣分) 5.解:设原计划每天栽树x棵 根据题意,得=4 整理,得x2+2x-48=0 解得x1=6,x2=-8 经检验x1=6,x2=-8都是原方程的根,但x2=-8不符合题意(舍去) 答:原计划每天栽树6棵. 6.解:(1)设安排x辆汽车装运A种水果,则安排(7-x)辆汽车装运C种水果. 根据题意得,2.2x +2(7-x)=15 解得,x=5,∴7-x=2 答:安排5辆汽车装运A种水果,安排2辆汽车装运C种水果。 (2)设安排m辆汽车装运A种水果,安排n辆汽车装运B种水果,则安排(20-m-n)辆装运C种水果。根据题意得,2.2m+2.1n+2(20-m-n)= 42 ∴n =20-2m 又∵∴ ∴ (m是整数) 设此次装运所获的利润为w,则w=6×2.2m +8×2.1n +5×2×(20-m-n)=-10.4m+336… ∵-10.4<0, ∴W随m的增大而减小, ∴当m=2时,W=315.2(百元)=31520(元) 即,各用2辆车装运A、C种水果,用16辆车装运B种水果使果品基地获得最大利润,最大利润为31520元. 7.答案:依题意,甲店型产品有件,乙店型有件,型有件,则(1) . 由解得. (2)由, . ,,39,40. 有三种不同的分配方案. ①时,甲店型38件,型32件,乙店型2件,型28件. ②时,甲店型39件,型31件,乙店型1件,型29件. ③时,甲店型40件,型30件,乙店型0件,型30件. (3)依题意: . ①当时,,即甲店型40件,型30件,乙店型0件,型30件,能使总利润达到最大. ②当时,,符合题意的各种方案,使总利润都一样. ③当时,,即甲店型10件,型60件,乙店型30件,型0件,能使总利润达到最大.查看更多