- 2021-11-12 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
九年级数学上册第24章解直角三角形24-4解直角三角形第1课时解直角三角形教案新版华东师大版
24.4 解直角三角形 第1课时 解直角三角形 1.使学生理解解直角三角形的意义. 2.能运用直角三角形的三个关系式解直角三角形. 重点 用直角三角形的三个关系式解直角三角形. 难点 用直角三角形的有关知识去解决简单的实际问题. 一、情境引入 前面的课时中,我们学习了直角三角形的边角关系,下面我们通过一道例题来看看大家掌握得怎么样. 例 在Rt△ABC中,∠C=90°,AB=5,BC=3,求∠A的各个三角函数值. 二、探究新知 教师利用课件引入例1,引导学生分析,使学生在讨论过程中理解三角形中“元素”的内涵,至于“元素”的定义不作深究. 把握好直角三角形边角之间的各种关系,我们就能解决直角三角形有关的实际问题了. 例1 如图,一棵大树在一次强烈的地震中于离地面5 m处折断倒下,树顶落在离树根12 m处,则大树在折断之前高多少? 例子中,能求出折断的树干之间的夹角吗? 学生结合引例讨论,得出结论:利用锐角三角函数的逆过程. 通过上面的例子,你们知道“解直角三角形”的含义吗? 学生讨论得出“解直角三角形”的含义:在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形. 问:上面例子中,若要完整解该直角三角形,还需求出哪些元素?能求出来吗? 学生结合定义讨论目标和方法,得出结论:利用两锐角互余. 【探索新知】 问:上面的例子是给了两条边.那么,如果给出一个角和一条边,能不能求出其他元素呢? 例2 如图,东西两炮台A,B相距2000米,同时发现入侵敌舰C,在炮台A处测得敌舰C在它的南偏东40°的方向,在炮台B处测得敌舰C在它的正南方,试求敌舰与两炮台的距离.(精确到1米) 3 解:在Rt△ABC中, ∵∠CAB=90°-∠DAC=50°, =tan∠CAB, ∴BC=AB·tan∠CAB=2000×tan50°≈2384(米). ∵=cos50°, ∴AC==≈3111(米). 答:敌舰与A,B两炮台的距离分别约为3111米和2384米. 问:AC还可以用哪种方法求? 学生讨论得出各种解法,分析比较,得出:使用题目中原有的条件,可使结果更精确. 问:通过对上面两个例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?(几个学生展示) 学生讨论分析,得出结论. 问:通过上面两个例子的学习,你们知道解直角三角形有几种情况吗? 学生交流讨论归纳:解直角三角形,只有下面两种情况: (1)已知两条边; (2)已知一条边和一个锐角. 三、练习巩固 教师利用课件展示练习,可由学生独立完成,教师点名上台展示,再点评. 1.在电线杆离地面8米高的地方向地面拉一条长10米的缆绳,问这条缆绳应固定在距离电线杆底部多远的地方? 2.海船以32.6海里/时的速度向正北方向航行,在A处看灯塔Q在海船的北偏东30°处,半小时后航行到B处,发现此时灯塔Q与海船的距离最短,求灯塔Q到B处的距离.(画出图形后计算,精确到0.1海里) 四、小结与作业 小结 1.“解直角三角形”是求出直角三角形的所有元素. 2.解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两条边或已知一条边和一个锐角. 3.解直角三角形的方法. 布置作业 从教材相应练习和“习题24.4”中选取. 通过直角三角形边角之间关系的复习和例题的实践应用, 3 归纳出“解直角三角形”的含义和两种解题情况.通过讨论交流得出解直角三角形的方法,并学会把实际问题转化为直角三角形的问题.给出一定的情景内容,引导学生自主探究,通过例题的实践应用,提高学生分析问题、解决问题的能力,以及提高综合运用知识的能力. 3查看更多