《同步课时卷》北师版八年级数学(下册)6

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

《同步课时卷》北师版八年级数学(下册)6

‎《同步课时卷》北师版八年级数学(下册)‎ ‎6.1平行四边形的性质(第一课时)‎ ‎1.在▱ABCD中,∠A∶∠B∶∠C∶∠D的值可以是(  )‎ A.1∶2∶3∶4‎ B.1∶2∶2∶1‎ C.1∶1∶2∶2‎ D.2∶1∶2∶1‎ ‎2.在▱ABCD中,∠A,∠B的度数之比为5∶4,则∠C等于(  )‎ A.60°‎ B.80°‎ C.100°‎ D.120°‎ ‎3.▱ABCD的周长为36cm,AB=BC,则较长边的长为(  )‎ A.15cm B.7.5cm C.21cm D.10.5cm ‎4.在▱ABCD中,若∠A+∠C=120°,则∠C= ,∠B=  . ‎ ‎5.在▱ABCD中,若∠A∶∠B=1∶3,那么∠A=  ,∠B=  ,∠C=  ,∠D= . ‎ ‎6.如图6-1-1所示,在▱ABCD中,AB=5cm,BC=4cm,则▱ABCD的周长为  cm. ‎ 图6-1-1‎ ‎7.已知▱ABCD的周长为32cm,AB∶BC=3∶5,那么AB=  cm. ‎ ‎8.如图6-1-2所示,在平行四边形ABCD中,过点A分别作AE⊥BC于点E,AF⊥CD于点F.求证:∠BAE=∠DAF.‎ 图6-1-2‎ ‎9.平行四边形的周长为36cm,一组邻边长度之差为4cm,求平行四边形各边的长.‎ ‎10.在▱ABCD中,如果∠B=100°,那么(  )‎ A.∠A=80°,∠D=100°‎ B.∠A=100°,∠D=80°‎ C.∠A=80°,∠D=80°‎ D.∠A=100°,∠D=100°‎ ‎11.如图6-1-3,在▱ABCD中,已知AD=12cm,AB=8cm.AE平分∠BAD交BC于点E,则CE的长等于(  )‎ 图6-1-3‎ A.8cm B.6cm C.4cm D.2cm ‎12.若平行四边形中两个内角的度数比为1∶2,则其中较大的内角是  度. ‎ ‎13.如图6-1-4所示,四边形ABCD为平行四边形,∠A+∠C=80°,▱ABCD的周长为40cm,且BC-AB=2cm,求▱ABCD的各边长和各内角的度数.‎ 图6-1-4‎ ‎14.如图6-1-5所示,在▱ABCD中,AB=AC,若▱ABCD的周长为38cm,△ABC的周长比▱ABCD的周长少10cm,求▱ABCD的一组邻边的长.‎ 图6-1-5‎ ‎15.如图6-1-6,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.‎ 图6-1-6‎ 参考答案 ‎1.D ‎2.C ‎3.D ‎4.60°120°‎ ‎5.45°135°45°135°‎ ‎6.18‎ ‎7.6‎ ‎8.证明:∵四边形ABCD为平行四边形,‎ ‎∴∠B=∠D.‎ ‎∵AE⊥BC,AF⊥CD,‎ ‎∴∠AEB=∠AFD=90°.‎ 又∠BAE=180°-∠B-∠AEB,∠DAF=180°-∠D-∠AFD,‎ ‎∴∠BAE=∠DAF.‎ ‎9.解:36÷2=18(cm),‎ ‎(18-4)÷2=7(cm),‎ ‎18-7=11(cm).‎ 答:各边长为11cm,7cm,11cm,7cm.‎ ‎10.A ‎11.C ‎12.120‎ ‎13.解:∠A=∠C=40°,∠B=∠D=140°,‎ CD=AB=9cm,AD=BC=11cm.‎ ‎14.解:∵四边形ABCD是平行四边形,且▱ABCD的周长为38cm,‎ ‎∴AB+BC=19cm,AB=CD.‎ 又∵AB=AC,‎ ‎∴AB=AC=CD.‎ ‎∵△ABC的周长比▱ABCD的周长少10cm,‎ ‎∴(AB+BC+CD+AD)-(AB+BC+AC)=2AB+BC+AD-2AB-BC=AD=10(cm),‎ ‎∴BC=AD=10(cm).‎ ‎∴AB=CD=19-10=9(cm).‎ ‎∴平行四边形的一组邻边的长分别是9cm,10cm.‎ ‎15.解:∵四边形ABCD为平行四边形,‎ ‎∴AB=DC=6,AD=BC=10,AB∥DC.‎ ‎∵AB∥DC,‎ ‎∴∠ABF=∠F.‎ 又∵BF平分∠ABC,‎ ‎∴∠ABF=∠CBF,‎ ‎∴∠CBF=∠F,‎ ‎∴BC=CF=10,‎ ‎∴DF=CF-DC=10-6=4.‎
查看更多

相关文章

您可能关注的文档