- 2021-06-24 发布 |
- 37.5 KB |
- 25页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学一轮—35曲线方程及圆锥曲线综合问题
第35讲 曲线方程及圆锥曲线的综合问题 一.【课标要求】 1.由方程研究曲线,特别是圆锥曲线的几何性质问题常化为等式解决,要加强等价转化思想的训练; 2.通过圆锥曲线与方程的学习,进一步体会数形结合的思想; 3.了解圆锥曲线的简单应用 二.【命题走向】 近年来圆锥曲线在高考中比较稳定,解答题往往以中档题或以押轴题形式出现,主要考察学生逻辑推理能力、运算能力,考察学生综合运用数学知识解决问题的能力。但圆锥曲线在新课标中化归到选学内容,要求有所降低,估计2007年高考对本讲的考察,仍将以以下三类题型为主 1.求曲线(或轨迹)的方程,对于这类问题,高考常常不给出图形或不给出坐标系,以考察学生理解解析几何问题的基本思想方法和能力; 2.与圆锥曲线有关的最值问题、参数范围问题,这类问题的综合型较大,解题中需要根据具体问题、灵活运用解析几何、平面几何、函数、不等式、三角知识,正确的构造不等式或方程,体现了解析几何与其他数学知识的联系。 预测2010年高考: 1.出现1道复合其它知识的圆锥曲线综合题; 2.可能出现1道考查求轨迹的选择题或填空题,也可能出现在解答题中间的小问 三.【要点精讲】 1.曲线方程 (1)求曲线(图形)方程的方法及其具体步骤如下: 步 骤 含 义 说 明 1、“建”:建立坐标系;“设”:设动点坐标。 建立适当的直角坐标系,用(x,y)表示曲线上任意一点M的坐标。 (1) 所研究的问题已给出坐标系,即可直接设点。 (2) 没有给出坐标系,首先要选取适当的坐标系。 2、现(限):由限制条件,列出几何等式。 写出适合条件P的点M的集合P={M|P(M)} 这是求曲线方程的重要一步,应仔细分析题意,使写出的条件简明正确。 3、“代”:代换 用坐标法表示条件P(M),列出方程f(x,y)=0 常常用到一些公式。 4、“化”:化简 化方程f(x,y)=0为最简形式。 要注意同解变形。 5、证明 证明化简以后的方程的解为坐标的点都是曲线上的点。 化简的过程若是方程的同解变形,可以不要证明,变形过程中产生不增根或失根,应在所得方程中删去或补上(即要注意方程变量的取值范围)。 这五个步骤(不包括证明)可浓缩为五字“口诀”:建设现(限)代化” (2)求曲线方程的常见方法: 直接法:也叫“五步法”,即按照求曲线方程的五个步骤来求解。这是求曲线方程的基本方法。 转移代入法:这个方法又叫相关点法或坐标代换法。即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解。 几何法:就是根据图形的几何性质而得到轨迹方程的方法 第 25 页 共 25 页 参数法:根据题中给定的轨迹条件,用一个参数来分别动点的坐标,间接地把坐标x,y联系起来,得到用参数表示的方程。如果消去参数,就可以得到轨迹的普通方程。 2.圆锥曲线综合问题 (1)圆锥曲线中的最值问题、范围问题 通常有两类:一类是有关长度和面积的最值问题;一类是圆锥曲线中有关的几何元素的最值问题。这些问题往往通过定义,结合几何知识,建立目标函数,利用函数的性质或不等式知识,以及观形、设参、转化、替换等途径来解决。解题时要注意函数思想的运用,要注意观察、分析图形的特征,将形和数结合起来。 圆锥曲线的弦长求法: 设圆锥曲线C∶f(x,y)=0与直线l∶y=kx+b相交于A(x1,y1)、B(x2,y2)两点,则弦长|AB|为: 若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|. 在解析几何中求最值,关键是建立所求量关于自变量的函数关系,再利用代数方法求出相应的最值.注意点是要考虑曲线上点坐标(x,y)的取值范围 (2)对称、存在性问题,与圆锥曲线有关的证明问题 它涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法。 (3)实际应用题 数学应用题是高考中必考的题型,随着高考改革的深入,同时课本上也出现了许多与圆锥曲线相关的实际应用问题,如桥梁的设计、探照灯反光镜的设计、声音探测,以及行星、人造卫星、彗星运行轨道的计算等 涉及与圆锥曲线有关的应用问题的解决关键是建立坐标系,合理选择曲线模型,然后转化为相应的数学问题作出定量或定性分析与判断,解题的一般思想是: (4)知识交汇题 圆锥曲线经常和数列、三角、平面向量、不等式、推理知识结合到一块出现部分有较强区分度的综合题 四.【典例解析】 题型1:求轨迹方程 例1.(1)一动圆与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线。 (2)双曲线有动点,是曲线的两个焦点,求的重心的轨迹方程。 解析:(1)(法一)设动圆圆心为,半径为,设已知圆的圆心分别为、, 将圆方程分别配方得:,, 第 25 页 共 25 页 当与相切时,有 ① 当与相切时,有 ② 将①②两式的两边分别相加,得, 即 ③ 移项再两边分别平方得: ④ 两边再平方得:, 整理得, 所以,动圆圆心的轨迹方程是,轨迹是椭圆 (法二)由解法一可得方程, 由以上方程知,动圆圆心到点和的距离和是常数,所以点的轨迹是焦点为、,长轴长等于的椭圆,并且椭圆的中心在坐标原点,焦点在轴上, ∴,,∴,, ∴, ∴圆心轨迹方程为。 (2)如图,设点坐标各为,∴在已知双曲线方程中,∴ ∴已知双曲线两焦点为, ∵存在,∴ 由三角形重心坐标公式有,即 。 ∵,∴。 已知点在双曲线上,将上面结果代入已知曲线方程,有 即所求重心的轨迹方程为:。 点评:定义法求轨迹方程的一般方法、步骤;“转移法”求轨迹方程的方法 例2.(2009年广东卷文)(本小题满分14分) 第 25 页 共 25 页 已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12.圆:的圆心为点. (1)求椭圆G的方程 (2)求的面积 (3)问是否存在圆包围椭圆G?请说明理由. 解(1)设椭圆G的方程为: ()半焦距为c; 则 , 解得 , 所求椭圆G的方程为:. (2 )点的坐标为 (3)若,由可知点(6,0)在圆外, 若,由可知点(-6,0)在圆外; 不论K为何值圆都不能包围椭圆G. 题型2:圆锥曲线中最值和范围问题 例3.(1)(2009辽宁卷理)以知F是双曲线的左焦点,是双曲线右支上的动点,则的最小值为 。 【解析】注意到P点在双曲线的两只之间,且双曲线右焦点为F’(4,0), 于是由双曲线性质|PF|-|PF’|=2a=4 而|PA|+|PF’|≥|AF’|=5 两式相加得|PF|+|PA|≥9,当且仅当A、P、F’三点共线时等号成立. 第 25 页 共 25 页 【答案】9 (2)(2009重庆卷文、理)已知椭圆的左、右焦点分别为,若椭圆上存在一点使,则该椭圆的离心率的取值范围为 . 【解析1】因为在中,由正弦定理得 则由已知,得,即 设点由焦点半径公式,得则 记得由椭圆的几何性质知,整理得 解得,故椭圆的离心率 【解析2】 由解析1知由椭圆的定义知 ,由椭圆的几何性质知所以以下同解析1. 【答案】 (3)(2009四川卷理)已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是( ) A.2 B.3 C. D. 【考点定位】本小题考查抛物线的定义、点到直线的距离,综合题。 【解析1】直线为抛物线的准线,由抛物线的定义知,P到的距离等于P到抛物线的焦点 第 25 页 共 25 页 的距离,故本题化为在抛物线上找一个点使得到点和直线的距离之和最小,最小值为到直线的距离,即,故选择A。 【解析2】如图,由题意可知 【答案】A 点评:由△PAF成立的条件,再延伸到特殊情形P、A、F共线,从而得出这一关键结论 例4.(1)(2009江苏卷)(本题满分10分) 在平面直角坐标系中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在轴上。 (1)求抛物线C的标准方程; (2)求过点F,且与直线OA垂直的直线的方程; (3)设过点的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为,求关于的表达式。 第 25 页 共 25 页 (2)(2009山东卷文)(本小题满分14分) 设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E. (1)求轨迹E的方程,并说明该方程所表示曲线的形状; (2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程; (3)已知,设直线与圆C:(1查看更多