- 2021-06-24 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学专题复习(精选精讲)练习2-指数函数习题精选精讲
指数函数 指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小 例1 已知函数满足,且,则与的大小关系是_____. 分析:先求的值再比较大小,要注意的取值是否在同一单调区间内. 解:∵, ∴函数的对称轴是. 故,又,∴. ∴函数在上递减,在上递增. 若,则,∴; 若,则,∴. 综上可得,即. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知,则x的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵, ∴函数在上是增函数, ∴,解得.∴x的取值范围是. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数的定义域和值域. 解:由题意可得,即, ∴,故. ∴函数的定义域是. 令,则, 又∵,∴. ∴,即. ∴,即. ∴函数的值域是. 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响. 4.最值问题 例4 函数在区间上有最大值14,则a的值是_______. 分析:令可将问题转化成二次函数的最值问题,需注意换元后的取值范围. 解:令,则,函数可化为,其对称轴为. ∴当时,∵, ∴,即. ∴当时,. 解得或(舍去); 当时,∵, ∴,即, ∴ 时,, 解得或(舍去),∴a的值是3或. 评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等. 5.解指数方程 例5 解方程. 解:原方程可化为,令,上述方程可化为,解得或(舍去),∴,∴,经检验原方程的解是. 评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 6.图象变换及应用问题 例6 为了得到函数的图象,可以把函数的图象( ). A.向左平移9个单位长度,再向上平移5个单位长度 B.向右平移9个单位长度,再向下平移5个单位长度 C.向左平移2个单位长度,再向上平移5个单位长度 D.向右平移2个单位长度,再向下平移5个单位长度 分析:注意先将函数转化为,再利用图象的平移规律进行判断. 解:∵,∴把函数的图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数的图象,故选(C). 评注:用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等. 习题 1、比较下列各组数的大小: (1)若 ,比较 与 ; (2)若 ,比较 与 ; (3)若 ,比较 与 ; (4)若 ,且 ,比较a与b; (5)若 ,且 ,比较a与b. 解:(1)由 ,故 ,此时函数 为减函数.由 ,故 . (2)由 ,故 .又 ,故 .从而 . (3)由 ,因 ,故 .又 ,故 .从而 . (4)应有 .因若 ,则 .又 ,故 ,这样 .又因 ,故 .从而 ,这与已知 矛盾. (5)应有 .因若 ,则 .又 ,故 ,这样有 .又因 ,且 ,故 .从而 ,这与已知 矛盾. 小结:比较通常借助相应函数的单调性、奇偶性、图象来求解. 2曲线 分别是指数函数 , 和 的图象,则 与1的大小关系是 ( ). ( 分析:首先可以根据指数函数单调性,确定 ,在 轴右侧令 ,对应的函数值由小到大依次为 ,故应选 . 小结:这种类型题目是比较典型的数形结合的题目,第(1)题是由数到形的转化,第(2)题则是由图到数的翻译,它的主要目的是提高学生识图,用图的意识. 求最值 3 求下列函数的定义域与值域. (1)y=2; (2)y=4x+2x+1+1. 解:(1)∵x-3≠0,∴y=2的定义域为{x|x∈R且x≠3}.又∵≠0,∴2≠1, ∴y=2的值域为{y|y>0且y≠1}. (2)y=4x+2x+1+1的定义域为R.∵2x>0,∴y=4x+2x+1+1=(2x)2+2·2x+1=(2x+1)2>1. ∴y=4x+2x+1+1的值域为{y|y>1}. 4 已知-1≤x≤2,求函数f(x)=3+2·3x+1-9x的最大值和最小值 解:设t=3x,因为-1≤x≤2,所以,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。 5、设 ,求函数 的最大值和最小值. 分析:注意到 ,设 ,则原来的函数成为 ,利用闭区间上二次函数的值域的求法,可求得函数的最值. 解:设 ,由 知, ,函数成为 , ,对称轴 ,故函数最小值为 ,因端点 较 距对称轴 远,故函数的最大值为 . 6(9分)已知函数在区间[-1,1]上的最大值是14,求a的值. .解: , 换元为,对称轴为. 当,,即x=1时取最大值,略 解得 a=3 (a= -5舍去) 7.已知函数 ( 且 ) (1)求 的最小值; (2)若 ,求 的取值范围. .解:(1) , 当 即 时, 有最小值为 (2) ,解得 当 时, ; 当 时, . 8(10分)(1)已知是奇函数,求常数m的值; (2)画出函数的图象,并利用图象回答:k为何值时,方程|3X-1|=k无 解?有一解?有两解? 解: (1)常数m=1 (2)当k<0时,直线y=k与函数的图象无交点,即方程无解; 当k=0或k1时, 直线y=k与函数的图象有唯一的交点,所以方程有一解; 当0查看更多