2011年高考数学人教版广东卷

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2011年高考数学人教版广东卷

‎2011年数学人教版广东卷 一、选择题 ‎1、(广东理2)已知集合 ∣为实数,且,为实数,且,则的元素个数为 ‎ A.0     B.‎1 ‎    C.2      D.3‎ ‎2、设是R上的任意实值函数.如下定义两个函数和;对任意,;.则下列等式恒成立的是( )‎ A.‎ B.‎ C.‎ D. ‎ ‎3、(广东文4)函数的定义域是 ( ) ‎ A. B. C. D.‎ ‎4、(广东理8)设S是整数集Z的非空子集,如果有,则称S关于数的乘法是封闭的.若T,V是Z的两个不相交的非空子集,且有有,则下列结论恒成立的是 ‎ A.中至少有一个关于乘法是封闭的 ‎ B.中至多有一个关于乘法是封闭的 ‎ C.中有且只有一个关于乘法是封闭的 ‎ D.中每一个关于乘法都是封闭的 二、填空题 ‎5、(广东文12)设函数若,则 .‎ ‎6、(广东理12)函数在 处取得极小值.‎ 三、解答题 ‎7、(广东文19) 设,讨论函数 的单调性.‎ ‎8、(广东理21)‎ ‎(2)设是定点,其中满足.过作的两条切线,切点分别为,与分别交于.线段上异于两端点的点集记为.证明:‎ ‎;‎ 四、选择题 ‎9、广东文8.设圆C与圆x2+(y-3)2=1外切,与直线y =0相切,则C的圆心轨迹为 ‎ A.抛物线 B.双曲线 C.椭圆 D.圆 ‎10、湖北理4.将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形的个数记为,则 A. B. C. D. ‎ 五、填空题 ‎11、如图,直角坐标系所在的平面为,直角坐标系(其中轴与轴重合)所在的平面为,.‎‎ ‎ x y ‎(y/)‎ C/‎ O x/‎ ‎•P/‎ ‎(Ⅰ)已知平面内有一点,则点在平面内的射影的坐标为 ;‎ ‎(Ⅱ)已知平面内的曲线的方程是 x y ‎(y/)‎ C/‎ O x/‎ ‎•P/‎ P H ‎,则曲线在平面内的 射影的方程是 .‎ 六、解答题 ‎12、(本小题满分14分)‎ 平面内与两定点,连续的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆成双曲线.‎ ‎(Ⅰ)求曲线的方程,并讨论的形状与值得关系;‎ ‎(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,设、是的两个焦点。试问:在撒谎个,是否存在点,使得△的面积。若存在,求的值;若不存在,请说明理由。‎ ‎13、广东理14.(坐标系与参数方程选做题)已知两曲线参数方程分别为 和,它们的交点坐标为 .[来源:Zxxk ‎(本小题满分14分)‎ 设圆C与两圆中的一个内切,另一个外切.‎ ‎(1)求C的圆心轨迹L的方程.‎ ‎(2)已知点且P为L上动点,求的最大值及 此时点P的坐标.‎ ‎14、‎ ‎(2)设是定点,其中满足.过作的两条切线,切点分别为,与分别交于.线段上异于两端点的点集记为.证明:;‎ ‎15、(本小题满分14分)‎ ‎ 在平面直角坐标系中,直线交轴于点A,设是上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP ‎(1)当点P在上运动时,求点M的轨迹E的方程;‎ ‎(2)已知T(1,-1),设H是E 上动点,求+的最小值,并给出此时点H的坐标;‎ ‎(3)过点T(1,-1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线的斜率k的取值范围。‎ 七、选择题 ‎16、(广东理7)如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为 ‎ A. B. C. D.‎ 八、解答题 ‎17、(广东理18) ‎ 如图5.在椎体P-ABCD中,ABCD是边长为1的棱形,‎ ‎ 且∠DAB=60,,PB=2,‎ ‎ E,F分别是BC,PC的中点.‎ ‎(1) 证明:AD 平面DEF;‎ ‎(2) 求二面角P-AD-B的余弦值.‎ ‎ ‎ ‎18、(广东理19) ‎ ‎ 设圆C与两圆中的一个内切,另一个外切。‎ ‎(1)求C的圆心轨迹L的方程;‎ ‎(2)已知点M,且P为L上动点,求的最大值及此时点P的坐标.‎ 九、填空题 ‎19、广东文13.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y 之间的关系:‎ 时间 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ 命中率 ‎0.4‎ ‎0.5‎ ‎0.6‎ ‎0.6‎ ‎0.4‎ ‎ 小李这5天的平均投篮命中率为_________;用线性回归分析的方法,预测小李每月6号打篮球6小时的投篮命中率为________.‎ ‎20、(广东理13)某数学老师身高‎176cm,他爷爷、父亲和儿子的身高分别是‎173cm、‎170cm和‎182cm .因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为_____cm.‎ 十、解答题 ‎21、广东文17.(本小题满分13分)‎ ‎ 在某次测验中,有6位同学的平均成绩为75分。用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:‎ 编号n ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ 成绩xn ‎70‎ ‎76‎ ‎72‎ ‎70‎ ‎72‎ ‎(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;‎ ‎(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率。‎ 十一、选择题 ‎22、广东文7.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有 ‎ ‎ A.20 B.‎15 ‎ C.12 D.10‎ ‎23、(珠海2011届高三上期末考试题)一容量为20的样本,其频率分布直方图如右,‎ 则样本在上的概率为 ‎(A)0.75 (B)0.65‎ ‎(C)0.8 (D)0.9‎ ‎24、(高州三中2011高三上期末考试试题)在三棱锥的六条棱中任意选择两条,则这两条棱是一对异面直线的概率为 ( )‎ ‎ A. B. C. D.‎ ‎25、广东理6.甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 ‎ A.     B.        C.      D.‎ ‎26、(高州市大井中学2011高三上期末考试)若,则方程有实根的概率为 ( )‎ ‎ A. B. C. D.‎ ‎27、(广东理6)甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 ‎ A.     B.        C.      D.‎ 十二、填空题 ‎28、为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y 之间的关系:‎ 时间 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ 命中率 ‎0.4‎ ‎0.5‎ ‎0.6‎ ‎0.6‎ ‎0.4‎ ‎ 小李这5天的平均投篮命中率为_________;用线性回归分析的方法,预测小李每月6号打篮球6小时的投篮命中率为________.‎ 十三、解答题 ‎29、广东理17.(本小题满分13分)‎ ‎ 为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:‎ 编号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ x ‎169‎ ‎178‎ ‎166‎ ‎175‎ ‎180‎ y ‎75‎ ‎80‎ ‎77‎ ‎70‎ ‎81‎ ‎(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;‎ ‎(2)当产品中的微量元素x,y满足x≥175,且y≥75时,‎ 该产品为优等品。用上述样本数据估计乙厂生产的优等品的数量;‎ ‎(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列极其均值(即数学期望)。‎ ‎30、(广东理17)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:‎ 编号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ x ‎169‎ ‎178‎ ‎166‎ ‎175‎ ‎180‎ y ‎75‎ ‎80‎ ‎77‎ ‎70‎ ‎81‎ ‎(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;‎ ‎(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品。用上述样本数据估计乙厂生产的优等品的数量;‎ ‎(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列极其均值(即数学期望)。‎ ‎31、(高州市大井中学2011高三上期末考试)某某中学高中学生有900名,学校要从中选出9名同学作为国庆60周年庆祝活动的志愿者.已知高一有400名学生,高二有300名学生,高三有200名学生.为了保证每名同学都有参与的资格,学校采用分层抽样的方法抽取.‎ ‎(Ⅰ)求高一、高二、高三分别抽取学生的人数;‎ ‎(Ⅱ)若再从这9名同学中随机的抽取2人作为活动负责人,求抽到的这2名同学都是高一学生的概率;‎ ‎(Ⅲ)在(Ⅱ)的条件下,求抽到的这2名同学不是同一年级的概率.‎ ‎32、(佛山2011普通高中高三教学质量检测(一))某班同学利用国庆节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:‎ ‎(Ⅰ)补全频率分布直方图并求、、的值;‎ ‎(Ⅱ)从年龄段在的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动,其中选取人作为领队,求选取的名领队中恰有1人年龄在岁的概率.‎ ‎33、(本小题满分13分)‎ ‎ 在某次测验中,有6位同学的平均成绩为75分。用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:‎ 编号n ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ 成绩xn ‎70‎ ‎76‎ ‎72‎ ‎70‎ ‎72‎ ‎(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;‎ ‎(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率。‎ ‎34、(广东理16)‎ ‎ 已知函数 ‎(1)求的值;‎ ‎(2)设求的值.‎ 十四、选择题 ‎35、(广东理3)若向量a,b,c满足a∥b且a⊥b,则 ‎ A.4     B.‎3 ‎     C.2       D.0‎ ‎36、(广东理5)已知在平面直角坐标系上的区域由不等式组给定。若为上的动点,点的坐标为,则的最大值为C ‎ A.    B.   C.4      D.3‎ 十五、填空题 ‎37、(广东理11)等差数列前9项的和等于前4项的和.若,则k=____________.‎ ‎38、(广东理9)不等式的解集是 .‎ ‎39、设函数若,则 .‎ ‎40、(高州三中2011高三上期末考试试题)设i为虚数单位,则__▲__‎ ‎41、(高州长坡中学2011高三上期末考试)若复数为实数,则实数 。‎ ‎42、‎ ‎(坐标系与参数方程选做题)已知两曲线参数方程分别为 和,它们的交点坐标为___________.‎ ‎43、(几何证明选讲选做题)如图4,过圆外一点分别作圆的切线 和割线交圆于,,且=7,是圆上一点使得=5,‎ ‎ ∠=∠, 则= 。‎ 以下是答案 一、选择题 ‎1、C ‎2、B ‎3、C ‎4、A 二、填空题 ‎5、-9‎ ‎6、‎ 三、解答题 ‎7、解:函数f(x)的定义域为(0,+∞)‎ 综上所述,f(x)的单调区间如下表:‎ ‎(其中)‎ ‎8、解:(1),‎ 直线AB的方程为,即,‎ ‎,方程的判别式,‎ 两根或,‎ ‎,,又,‎ ‎,得,‎ ‎.‎ ‎(2)由知点在抛物线L的下方,‎ ‎①当时,作图可知,若,则,得;‎ 若,显然有点; .‎ ‎②当时,点在第二象限,‎ 作图可知,若,则,且;‎ 若,显然有点; ‎ ‎.‎ 根据曲线的对称性可知,当时,,‎ 综上所述,(*);‎ 由(1)知点M在直线EF上,方程的两根或,‎ 同理点M在直线上,方程的两根或,‎ 若,则不比、、小,‎ ‎,又,‎ ‎;又由(1)知,;‎ ‎,综合(*)式,得证.‎ ‎(3)联立,得交点,可知,‎ 过点作抛物线L的切线,设切点为,则,‎ 得,解得,‎ 又,即,‎ ‎,设,,‎ ‎,又,;‎ ‎,,‎ ‎.‎ 四、选择题 ‎9、D ‎10、【答案】Cx y O F A B C D 解析:根据抛物线的对称性,正三角形的两个 顶点一定关于x轴对称,且过焦点的两条直线 倾斜角分别为和,这时过焦点的直线 与抛物线最多只有两个交点,如图所以正三角形 的个数记为,,所以选C.‎ 五、填空题 ‎11、,‎ 解析:(Ⅰ)设点在平面内的射影的坐标为,‎ 则点的纵坐标和纵坐标相同,‎ 所以,过点作,垂足为,‎ 连结,则,横坐标 ‎,‎ 所以点在平面内的射影的坐标为;‎ ‎(Ⅱ)由(Ⅰ)得,,所以代入曲线的方程,得,‎ 所以射影的方程填.‎ 六、解答题 ‎12、本小题主要考查曲线与方程、圆锥曲线等基础知识,同时考查推理运算的能力,以及分类与整合和数形结合的思想。(满分14分)‎ ‎ 解:(I)设动点为M,其坐标为,‎ ‎ 当时,由条件可得 即,又的坐标满足 故依题意,曲线C的方程为 当曲线C的方程为是焦点在y轴上的椭圆;‎ 当时,曲线C的方程为,C是圆心在原点的圆;‎ 当时,曲线C的方程为,C是焦点在x轴上的椭圆;‎ 当时,曲线C的方程为C是焦点在x轴上的双曲线。‎ ‎(II)由(I)知,当m=-1时,C1的方程为 当时,C2的两个焦点分别为 对于给定的,C1上存在点使得的 充要条件是 ‎②‎ ‎①‎ ‎ 由①得由②得 当或时,存在点N,使S=|m|a2;‎ 当或时,不存在满足条件的点N,‎ 当时,‎ 由,‎ 可得令,‎ 则由,‎ 从而,‎ 于是由,可得 综上可得:‎ 当时,在C1上,存在点N,使得 当时,在C1上,存在点N,使得 当时,在C1上,不存在满足条件的点N。‎ ‎13、(1)解:设C的圆心的坐标为,由题设条件知 化 简得L的方程为 ‎(2)解:过M,F的直线方程为 ‎,将其代入L的方程得 ‎ 解得 ‎ 因T1在线段MF外,T2在线段MF内,故 ‎ ,若P不在直线MF上,在中有 ‎ 故只在T1点取得最大值2。‎ ‎14、解:(1),‎ 直线AB的方程为,即,‎ ‎,方程的判别式,‎ 两根或,‎ ‎,,又,‎ ‎,得,‎ ‎.‎ ‎(2)由知点在抛物线L的下方,‎ ‎①当时,作图可知,若,则,得;‎ 若,显然有点; .‎ ‎②当时,点在第二象限,‎ 作图可知,若,则,且;‎ 若,显然有点; ‎ ‎.‎ 根据曲线的对称性可知,当时,,‎ 综上所述,(*);‎ 由(1)知点M在直线EF上,方程的两根或,‎ 同理点M在直线上,方程的两根或,‎ 若,则不比、、小,‎ ‎,又,‎ ‎;又由(1)知,;‎ ‎,综合(*)式,得证.‎ ‎(3)联立,得交点,可知,‎ 过点作抛物线L的切线,设切点为,则,‎ 得,解得,‎ 又,即,‎ ‎,设,,‎ ‎,又,;‎ ‎,,.‎ ‎15、(本小题满分14分)‎ ‎ 解:(1)如图1,设MQ为线段OP的垂直平分线,交OP于点Q,‎ ‎ ‎ ‎ 因此即 ①‎ ‎ 另一种情况,见图2(即点M和A位于直线OP的同侧)。‎ ‎ MQ为线段OP的垂直平分线,‎ ‎ 又 ‎ 因此M在轴上,此时,记M的坐标为 ‎ 为分析的变化范围,设为上任意点 ‎ 由(即)得,‎ ‎ 故的轨迹方程为 ②‎ ‎ 综合①和②得,点M轨迹E的方程为 ‎(2)由(1)知,轨迹E的方程由下面E1和E2 ‎ 两部分组成(见图3):‎ ‎ ;‎ ‎ ‎ ‎ 当时,过T作垂直于的直线,垂足为,交E1于。‎ ‎ 再过H作垂直于的直线,交 ‎ 因此,(抛物线的性质)。‎ ‎ (该等号仅当重合(或H与D重 合)时取得)。‎ ‎ 当时,则 ‎ 综合可得,|HO|+|HT|的最小值为3,且此时点H的坐标为 ‎ (3)由图3知,直线的斜率不可能为零。‎ ‎ 设 ‎ 故的方程得:‎ ‎ 因判别式 ‎ 所以与E中的E1有且仅有两个不同的交点。‎ ‎ 又由E2和的方程可知,若与E2有交点,‎ ‎ 则此交点的坐标为有唯一交点,从而表三个不同的交点。‎ ‎ 因此,直线的取值范围是 七、选择题 ‎16、B 八、解答题 ‎17、法一:(1)证明:取AD中点G,连接PG,BG,BD。‎ ‎ 因PA=PD,有,在中,,有为 等边三角形,因此,所以 平面PBG ‎ 又PB//EF,得,而DE//GB得AD DE,又,所以 AD 平面DEF。‎ ‎ (2),‎ ‎ 为二面角P—AD—B的平面角,‎ ‎ 在 ‎ 在 ‎ ‎ ‎ 法二:(1)取AD中点为G,因为 ‎ 又为等边三角形,因此,,‎ 从而平面PBG。‎ ‎ 延长BG到O且使得PO OB,又平面PBG,PO AD,‎ ‎ 所以PO 平面ABCD。‎ ‎ 以O为坐标原点,菱形的边长为单位长度,直线OB,OP分别为轴,z轴,平行于AD的直线为轴,建立如图所示空间直角坐标系。‎ ‎ 设 ‎ ‎ ‎ ‎ ‎ 由于 ‎ 得 ‎ 平面DEF。‎ ‎ (2)‎ ‎ ‎ ‎ 取平面ABD的法向量 ‎ 设平面PAD的法向量 ‎ 由 ‎ 取 ‎18、(1)解:设C的圆心的坐标为,由题设条件知 ‎ ‎ ‎ 化简得L的方程为 ‎ (2)解:过M,F的直线方程为,将其代入L的方程得 ‎ ‎ ‎ 解得 ‎ 因T1在线段MF外,T2在线段MF内,故 ‎ ,若P不在直线MF上,在中有 ‎ ‎ ‎ 故只在T1点取得最大值2。‎ 九、填空题 ‎19、0.5, 0.53‎ ‎20、185‎ 十、解答题 ‎21、(本小题满分13分)‎ ‎ 解:(1)‎ ‎ ‎ ‎ ,‎ ‎ ‎ ‎ (2)从5位同学中随机选取2位同学,共有如下10种不同的取法:‎ ‎ {1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},‎ ‎ 选出的2位同学中,恰有1位同学的成绩位于(68,75)的取法共有如下4种取法:‎ ‎ {1,2},{2,3},{2,4},{2,5},‎ ‎ 故所求概率为 十一、选择题 ‎22、A ‎23、B ‎24、C  ‎ ‎25、D ‎26、C  ‎ ‎27、D 十二、填空题 ‎28、0.5,0.53‎ 十三、解答题 ‎29、(本小题满分13分)‎ ‎ 解:(1),即乙厂生产的产品数量为35件。‎ ‎ (2)易见只有编号为2,5的产品为优等品,所以乙厂生产的产品中的优等品 ‎ 故乙厂生产有大约(件)优等品,‎ ‎ (3)的取值为0,1,2。‎ ‎ ‎ ‎ 所以的分布列为 ‎0‎ ‎1‎ ‎2‎ P ‎ 故 ‎30、解:(1),即乙厂生产的产品数量为35件。‎ ‎ (2)易见只有编号为2,5的产品为优等品,所以乙厂生产的产品中的优等品 ‎ 故乙厂生产有大约(件)优等品,‎ ‎ (3)的取值为0,1,2。‎ ‎ ‎ ‎ 所以的分布列为 ‎0‎ ‎1‎ ‎2‎ P ‎ 故 ‎31、解:(Ⅰ)样本容量与总容量的比为 ‎ 则高一、高二、高三应分别抽取的学生为 ‎(人),(人),(人).------ 4分 ‎(Ⅱ)设“抽到的这2名同学是高一的学生为事件A” ‎ 则. ------ 8分 ‎(Ⅲ)设“抽到的这2名同学不是同一年级为事件B” ‎ 则. ------ 13分 ‎32、解:(Ⅰ)第二组的频率为,所以高为.频率直方图如下:‎ ‎ -------------------------------2分 第一组的人数为,频率为,所以.‎ 由题可知,第二组的频率为0.3,所以第二组的人数为,所以.‎ 第四组的频率为,所以第四组的人数为,所以.‎ ‎(Ⅱ)因为岁年龄段的“低碳族”与岁年龄段的“低碳族”的比值为,所以采 用分层抽样法抽取6人,岁中有4人,岁中有2人. --------8分 设岁中的4人为、、、,岁中的2人为、,则选取2人作为领队的有、、、、、、、、、、、、、、,共15种;其中恰有1人年龄在岁的有、、、、、、、,共8种.‎ ‎ -----10分 所以选取的2名领队中恰有1人年龄在岁的概率为. -------------------------------12分 ‎33、(本小题满分13分)‎ ‎ 解:(1)‎ ‎,‎ ‎ ,‎ ‎ (2)从5位同学中随机选取2位同学,共有如下10种不同的取法:‎ ‎ {1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},‎ ‎ 选出的2位同学中,恰有1位同学的成绩位于(68,75)的取法共有如下4种取法:‎ ‎ {1,2},{2,3},{2,4},{2,5},‎ ‎ 故所求概率为 ‎34、解:(1)‎ ‎ ;‎ ‎ (2)‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ 故 十四、选择题 ‎35、D ‎36、C 十五、填空题 ‎37、10‎ ‎38、‎ ‎39、-9‎ ‎40、-4‎ ‎41、1、2  ‎ ‎42、‎ ‎43、‎
查看更多

相关文章

您可能关注的文档