- 2021-05-14 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
(新课标)天津市2020年高考数学二轮复习 专题能力训练9 三角函数的图象与性质 理
专题能力训练9 三角函数的图象与性质 一、能力突破训练 1.为了得到函数y=sin的图象,只需把函数y=sin 2x的图象上所有的点( ) A.向左平行移动个单位长度 B.向右平行移动个单位长度 C.向左平行移动个单位长度 D.向右平行移动个单位长度 2.设θ∈R,则“”是“sin θ<”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 3.若将函数y=2sin 2x的图象向左平移个单位长度,则平移后图象的对称轴为( ) A.x=(k∈Z) B.x=(k∈Z) C.x=(k∈Z) D.x=(k∈Z) 4.(2018全国Ⅱ,理10)若f(x)=cos x-sin x在[-a,a]是减函数,则a的最大值是( ) A. B. C. D.π 10 5.函数f(x)=Asin(ωx+φ)的图象关于直线x=对称,若它的最小正周期为π,则函数f(x)的图象的一个对称中心是( ) A. B. C. D. 6.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sin α=,则cos(α-β)= . 7.定义一种运算:(a1,a2)⊗(a3,a4)=a1a4-a2a3,将函数f(x)=(,2sin x)⊗(cos x,cos 2x)的图象向左平移n(n>0)个单位所得图象对应的函数为偶函数,则n的最小值为 . 8.函数f(x)=Asin(ωx+φ)的部分图象如图所示,则f(x)= . 9.已知函数f(x)=sin x+λcos x的图象的一个对称中心是点,则函数g(x)=λsin xcos x+sin2x的图象的一条对称轴是 .(写出其中的一条即可) 10.已知函数f(x)=sin2x-cos2x-2sin xcos x(x∈R). (1)求f的值; (2)求f(x)的最小正周期及单调递增区间. 11.已知函数f(x)=sin2x-sin2,x∈R. (1)求f(x)的最小正周期; (2)求f(x)在区间上的最大值和最小值. 10 二、思维提升训练 12.下图是函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象,其中A,B两点之间的距离为5,则f(-1)等于( ) A.2 B. C.- D.-2 13.设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π,若f=2,f=0,且f(x)的最小正周期大于2π,则( ) A.ω=,φ= B.ω=,φ=- C.ω=,φ=- D.ω=,φ= 14.函数y=的图象与函数y=2sin πx(-2≤x≤4)的图象所有交点的横坐标之和等于( ) A.2 B.4 C.6 D.8 15.如果两个函数的图象平移后能够重合,那么称这两个函数为“互为生成”函数.给出下列四个函数: ①f(x)=sin x+cos x;②f(x)=(sin x+cos x); ③f(x)=sin x;④f(x)=sin x+. 其中为“互为生成”函数的是 .(填序号) 16.如图,在同一个平面内,向量的模分别为1,1,的夹角为α,且tan α=7,的夹角为45°.若=m+n(m,n∈R),则m+n= . 10 17.已知函数f(x)的图象是由函数g(x)=cos x的图象经如下变换得到:先将g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向右平移个单位长度. (1)求函数f(x)的解析式,并求其图象的对称轴方程; (2)已知关于x的方程f(x)+g(x)=m在[0,2π)内有两个不同的解α,β. ①求实数m的取值范围; ②证明:cos(α-β)=-1. 10 专题能力训练9 三角函数的图象与性质 一、能力突破训练 1.D 解析 由题意,为得到函数y=sin=sin,只需把函数y=sin 2x的图象上所有点向右平行移动个单位长度,故选D. 2.A 解析 当时,0<θ<,∴0查看更多
相关文章
- 当前文档收益归属上传用户