- 2022-04-01 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
九年级上册青岛版数学教案3-7正多边形与圆
3.7正多边形与圆教学目标【知识与能力】了解正多边形和圆的有关概念:正多边形的外接圆,正多边形的中心,正多边形的半径,正多边形的中心角,正多边形的边心距.【过程与方法】通过实例使学生理解,体会正多边形边数增加与圆的无限接近思想.【情感态度价值观】经历探索正多边形与圆相关结论的过程,发展学生的数学思考能力.教学重难点【教学重点】正多边形的概念与正多边形和圆的关系的第一个定理.【教学难点】对定理的理解以及定理的证明方法.课前准备无教学过程一、复习引入请同学们口答下面两个问题.1.什么叫正多边形?2.从你身边举出两三个正多边形的实例,正多边形具有轴对称、中心对称吗?其对称轴有几条,对称中心是哪一点?二、探索新知知识点1:内接正多边形(1)观察下列正多边形分别画出图中各正多边形的对称轴,看看能发现什么结果?交流:你认为正多边形都是轴对称性图形吗?归纳:正多边形都是轴对称图形,一个正n边形共有n条对称轴.正多边形的各条对称轴相交于一点,这点到正多边形的各个顶点的距离相等,到各个边的距离也相等.(2)观察下列图形思考:你知道正多边形和圆有什么关系吗?-3- 归纳:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆,圆心是各对称轴的交点.(3)新概念定义:顶点都在同一个圆上的正多边形叫圆内接正多边形,这个圆叫正多边形的外接圆.这个正多边形的外接圆的圆心叫做这个多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.中心到正多边形的一边的距离叫做正多边形的边心距.(4)例题解析 例1已知正六边形ABCDEF的半径是R,求这个正六边形的边长a,周长p和面积S.知识点2:圆内多边形作法(1)用量角器等分圆周由在同圆中相等的弦所对的弧相等可知,在一个圆中,先用量角器作一个等于的圆心角,这个角所对的弧就是圆周的,然后在圆周上依次截取这条弧的等弧,就得到圆的n等份点,从而作出正n边形(正五角星就是这样作出的).(2)用尺规等分圆周对于一些特殊的正n边形,还可以用直尺和圆规来等分圆周.①正四边形的作法如图,用直尺和圆规作⊙O的两条互相垂直的直径,就可以把⊙O分成4等份,从而作出正四边形.我们再逐次平分各边所对的弧,就可以作出正八边形、正十六边形等.-3- ②正六边形的作法如图(1),设⊙O的半径为R,通常先作出⊙O的一条自径AB,然后分别以点A,B为圆心、R为半径作弧,与⊙O交于点C,D,E,F,从而得到⊙O的6等份点,作出正六边形.如果再逐次等分各边所对的弧,就可作出正十二边形、正二十四边形等.我们可以连接6等份圆周的相间两个点,得到正三角形,如图(2).(3)例题解析例2用直尺和圆规作圆的内接正方形.例3用直尺和圆规作圆的内接正六边形.三、归纳小结(学生小结,老师点评)1.正多边和圆的有关概念:正多边形的中心,正多边形的半径,正多边形的中心角,正多边的边心距.2.正多边形的半径、正多边形的中心角、边长、正多边的边心距之间的等量关系.-3-查看更多