- 2021-07-01 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020版高中数学 第一章 解三角形 第2课时 角度问题同步精选测试 新人教B版必修5
同步精选测试 角度问题 (建议用时:45分钟) [基础测试] 一、选择题 1.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为( ) A.α>β B.α=β C.α+β=90° D.α+β=180° 【解析】 根据题意和仰角、俯角的概念画出草图,如图.知α=β,故应选B. 【答案】 B 2.海上有A,B两个小岛相距10 n mile,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是( ) A.10 n mile B. n mile C.5 n mile D.5 n mile 【解析】 由题意知,在△ABC中, AB=10(n mile),∠A=60°,∠B=75°, 则∠C=180°-∠A-∠B=45°. 由正弦定理,得BC== =5(n mile). 【答案】 D 3.我舰在敌岛A处南偏西50°的B处,且A、B距离为12海里,发现敌舰正离开岛沿北偏西10°的方向以每小时10海里的速度航行,若我舰要用2小时追上敌舰,则速度大小为( ) 【导学号:18082066】 A.28海里/时 B.14海里/时 C.14海里/时 D.20海里/时 【解析】 如图,设我舰在C处追上敌舰,速度为v, 在△ABC中,AC=10×2=20(海里), AB=12海里,∠BAC=120°, 7 ∴BC2=AB2+AC2-2AB·ACcos 120°=784, ∴BC=28海里, ∴v=14海里/时. 【答案】 B 4.从高出海平面h m的小岛看正东方向有一只船俯角为30°,看正南方向有一只船俯角为45°,则此时两船间的距离为( ) A.2h m B.h m C.h m D.2h m 【解析】 如图所示,BC=h m,AC=h m, ∴AB==2h(m). 【答案】 A 二、填空题 5.如图1223所示,一艘海轮从A处出发,测得灯塔在海轮的北偏东15°方向,与海轮相距20海里的B处,海轮按北偏西60°的方向航行了30分钟后到达C处,又测得灯塔在海轮的北偏东75°的方向,则海轮的速度为________海里/分钟. 图1223 【解析】 由已知得∠ACB=45°,∠B=60°, 由正弦定得=, 所以AC===10, 所以海轮航行的速度为=(海里/分钟). 【答案】 6.某船在岸边A处向正东方向航行x海里后到达B处,然后朝南偏西60°方向航行3海里到达C处,若A处与C处的距离为海里,则x的值为________. 【解析】 x2+9-2·x·3cos 30°=()2, 解得x=2或x=. 7 【答案】 或2 7.一船以每小时15 km的速度向东航行,船在A处看到一个灯塔M在北偏东60°方向,行驶4 h后,船到B处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km. 【导学号:18082067】 【解析】 如图所示,依题意有AB=15×4=60,∠MAB=30°, ∠AMB=45°, 在△AMB中, 由正弦定理得=, 解得BM=30(km). 【答案】 30 8.一船自西向东航行,上午10:00到达灯塔P的南偏西75°、距塔68 n mile的M处,下午14:00到达这座灯塔的东南方向的N处,则这只船航行的速度为________n mile/h. 【导学号:18082068】 【解析】 如图,由题意知∠MPN=75°+45°=120°,∠PNM=45°. 在△PMN中,由正弦定理,得 =, ∴MN=68×=34. 又由M到N所用时间为14-10=4(h), ∴船的航行速度v==(n mile/h). 【答案】 三、解答题 9.某人从塔的正东沿着南偏西60°的方向前进40 m后,看见塔在东北方向,若沿途测得塔顶的最大仰角为30°,求塔高. 【导学号:18082069】 【解】 如图,设AE为塔,B为塔正东方向一点,某人沿南偏西60°的方向前进40 m到达C处,即BC=40 m,且∠CAB=135°,∠ABC=30°,∠ACB=15°. 7 在△ABC中,=,即=, ∴AC=20 m. 过点A作AG⊥BC,垂足为G,此时仰角∠AGE最大, ∴∠AGE=30°. 在△ABC中,由面积公式知BC·AG=AC·CB·sin∠ACB, ∴AG===20·sin 15°=20sin(45°-30°)=20×=10(-1)m. 在Rt△AEG中,∵AE=AGtan∠AGE, ∴AE=10(-1)×=m,即塔高为m. 10.如图1224,正在海上A处执行任务的渔政船甲和在B处执行任务的渔政船乙,同时收到同一片海域上一艘渔船丙的求救信号,此时渔船丙在渔政船甲的南偏东40°方向距渔政船甲70 km的C处,渔政船乙在渔政船甲的南偏西20°方向的B处,两艘渔政船协调后立即让渔政船甲向渔船丙所在的位置C处沿直线AC航行前去救援,渔政船乙仍留在B处执行任务,渔政船甲航行30 km到达D处时,收到新的指令另有重要任务必须执行,于是立即通知在B处执行任务的渔政船乙前去救援渔船丙(渔政船乙沿直线BC航行前去救援渔船丙),此时B、D两处相距42 km,问渔政船乙要航行多少距离才能到达渔船丙所在的位置C处实施营救. 图1224 【解】 设∠ABD=α,在△ABD中,AD=30, BD=42,∠BAD=60°. 7 由正弦定理得=, sin α=sin∠BAD=sin 60°=, 又∵AD查看更多
相关文章
- 当前文档收益归属上传用户