- 2021-06-22 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020高考数学二轮复习练习:第一部分 小题专题练 小题专题练(二) 三角函数与平面向量含解析
小题专题练(二) 三角函数与平面向量 一、选择题 1.(2019·昆明市诊断测试)在平面直角坐标系中,角α的始边与x轴的正半轴重合,终边与单位圆交于点P(-,),则sin(α+)=( ) A. B.- C. D.- 2.(2019·湖南省五市十校联考)已知向量a,b满足|a|=1,|b|=2,a·(a-2b)=0,则|a+b|=( ) A. B. C.2 D. 3.(2019·洛阳尖子生第二次联考)在△ABC中,点D在线段BC上,且=2,点O在线段CD上(与点C,D不重合).若=x+(1-x),则x的取值范围是( ) A.(0,1) B.(,1) C.(0,) D.(,) 4.(2019·广东六校第一次联考)将函数f(x)=cos 2x的图象向右平移个单位长度后得到函数g(x)的图象,则g(x)具有性质( ) A.最大值为1,图象关于直线x=对称 B.为奇函数,在(0,)上单调递增 C.为偶函数,在(-,)上单调递增 D.周期为π,图象关于点(,0)对称 5.函数f(x)=cos2-sin2x在上的值域是( ) A. B. C. D. 6.在△ABC中,M是BC的中点,AM=1,点P在AM上且满足=2,则·(+)等于( ) A.- B.- C. D. 7.(2019·长春市质量监测(一))在△ABC中,内角A,B,C的对边分别为a,b,c,若b=acos C+c,则角A等于( ) A.60° B.120° C.45° D.135° 8.(2019·开封模拟)已知△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积为4,且2bcos A+a=2c,a+c=8,则其周长为( ) A.10 B.12 C.8+ D.8+2 9.设△ABC的内角A,B,C的对边分别为a,b,c,且满足A=,a=,cos2B-cos2C-sin2A=-sin Asin B,则边长b的值为( ) A. B. C. D. 10.在△ABC中,若(sin A+sin B)∶(sin A+sin C)∶(sin B+sin C)=4∶5∶6,且该三角形的面积为15,则△ABC的最大边长等于( ) A.12 B.14 C.16 D.18 11.(多选)若角A,B,C是△ABC的三个内角,则下列等式中一定成立的是( ) A.cos(A+B)=cos C B.sin(A+B)=-sin C C.cos =sin D.sin =cos 12.(多选)已知函数f(x)=Asin ωx(A>0,ω>0)与g(x)=cos ωx的部分图象如图所示,则( ) A.A=1 B.A=2 C.ω= D.ω= 13.(多选)函数f(x)=sin 2x-(cos2x-sin2x)的图象为C,如下结论正确的是( ) A.f(x)的最小正周期为π B.对任意的x∈R,都有f+f=0 C.f(x)在上是增函数 D.由y=2sin 2x的图象向右平移个单位长度可以得到图象C 二、填空题 14.(2019·广州市调研测试)设θ为第二象限角,若tan(θ+)=,则cos θ=________. 15.(2019·湖南省五市十校联考)在直角三角形ABC中,∠C=,AB=4,AC=2,若=,则·=________. 16.已知函数f(x)=sin+,ω>0,x∈R,且f(α)=-,f(β)=.若|α-β|的最小值为,则f=________,函数f(x)的单调递增区间为________. 17.(2019·贵阳模拟)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,若a=1,2acos C+c=2b,则角A=________,△ABC的周长的取值范围是________. 小题专题练(二) 三角函数与平面向量 1.解析:选A.由题意,得sin α=,cos α=-,所以sin(α+)= sin αcos+cos αsin=.故选A. 2.解析:选A.由题意知,a·(a-2b)=a2-2a·b=1-2a·b=0,所以2a·b=1,所以|a+b|===.故选A. 3.解析:选C.通解: =x+(1-x)=x(-)+,即-=x(-),所以=x,所以=x.因为=2,所以=3,则0查看更多
相关文章
- 当前文档收益归属上传用户