- 2021-05-13 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
安徽省高考数学试卷理科答案与解析
2015年安徽省高考数学试卷(理科) 参考答案与试题解析 一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的) 1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是( ) A. y=cosx B. y=sinx C. y=lnx D. y=x2+1 3.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是( ) A. x2﹣=1 B. ﹣y2=1 C. ﹣x2=1 D. y2﹣=1 5.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A. 若α,β垂直于同一平面,则α与β平行 B. 若m,n平行于同一平面,则m与n平行 C. 若α,β不平行,则在α内不存在与β平行的直线 D. 若m,n不平行,则m与n不可能垂直于同一平面 6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为( ) A. 8 B. 15 C. 16 D. 32 7.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是( ) A. 1+ B. 2+ C. 1+2 D. 2 8.(5分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是( ) A. ||=1 B. ⊥ C. •=1 D. (4+)⊥ 9.(5分)(2015•安徽)函数f(x)=的图象如图所示,则下列结论成立的是( ) A. a>0,b>0,c<0 B. a<0,b>0,c>0 C. a<0,b>0,c<0 D. a<0,b<0,c<0 10.(5分)(2015•安徽)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是( ) A. f(2)<f(﹣2)<f(0) B. f(0)<f(2)<f(﹣2) C. f(﹣2)<f(0)<f(2) D. f(2)<f(0)<f(﹣2) 二.填空题(每小题5分,共25分) 11.(5分)(2015•安徽)(x3+)7的展开式中的x5的系数是 (用数字填写答案) 12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是 . 13. (5分)(2015•安徽)执行如图所示的程序框图(算法流 程图),输出的n为 14. (5分)(2015•安徽)已知数列{an}是递增的等比数列, a1+a4=9,a2a3=8,则数列{an}的前n项和等于 . 14. (5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数, 下列条件中,使得该三次方程仅有一个实根的是 (写出所有正确条件的编号) ①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2. ④a=0,b=2.⑤a=1,b=2. 三.解答题(共6小题,75分) 16.(12分)(2015•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长. 17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率; (Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望) 18.(12分)(2015•安徽)设n∈N*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标 (Ⅰ)求数列{xn}的通项公式; (Ⅱ)记Tn=x12x32…x2n﹣12,证明:Tn≥. 19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F. (Ⅰ)证明:EF∥B1C; (Ⅱ)求二面角E﹣A1D﹣B1的余弦值. 20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为 (Ⅰ)求E的离心率e; (Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程. 21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b. (Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值; (Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D; (Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值. 答案: 1、 解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限, 故选:B. 2、 解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点; 对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点; 对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点; 对于D,定义域为R,为偶函数,都是没有零点; 故选A. 3、 解:由1<x<2可得2<2x<4,则由p推得q成立, 若2x>1可得x>0,推不出1<x<2. 由充分必要条件的定义可得p是q成立的充分不必要条件. 故选A. 4、 解:由A可得焦点在x轴上,不符合条件; 由B可得焦点在x轴上,不符合条件; 由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件; 由D可得焦点在y轴上,渐近线方程为y=x,不符合条件. 故选C. 5、 解:对于A,若α,β垂直于同一平面,则α与β不一定平行,如果墙角的三个平面;故A错误; 对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误; 对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误; 对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确; 故选D. 6、 解:∵样本数据x1,x2,…,x10的标准差为8, ∴=8,即DX=64, 数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64, 则对应的标准差为==16, 故选:C. 7、 解:根据几何体的三视图,得; 该几何体是底面为等腰直角三角形的三棱锥,如图所示; ∴该几何体的表面积为 S表面积=S△PAC+2S△PAB+S△ABC =×2×1+2××+×2×1 =2+. 故选:B. 8、 解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又, 所以,, 所以=2,=1×2×cos120°=﹣1, 4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以; 故选D. 9、 解:函数在P处无意义,即﹣c>0,则c<0, f(0)=,∴b>0, 由f(x)=0得ax+b=0,即x=﹣, 即函数的零点x=﹣>0, ∴a<0, 综上a<0,b>0,c<0, 故选:C 10、 解:依题意得,函数f(x)的周期为π, ∵ω>0, ∴ω==2.(3分) 又∵当x=时,函数f(x)取得最小值, ∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,(5分) ∴f(x)=Asin(2x+2kπ+)=Asin(2x+).(6分) ∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0. f(2)=Asin(4+)<0 f(0)=Asin=Asin>0 又∵>﹣4+2π>>,而f(x)=Asin(2x+)在区间(,)是单调递减的, ∴f(2)<f(﹣2)<f(0) 故选:A. 11、 解:根据所给的二项式写出展开式的通项, Tr+1==; 要求展开式中含x5的项的系数, ∴21﹣4r=5, ∴r=4,可得:=35. 故答案为:35. 12、 解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16. 直线θ=(ρ∈R)化为y=x. ∴圆心C(0,4)到直线的距离d==2, ∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6. 故答案为:6. 13、 解:模拟执行程序框图,可得 a=1,n=1 满足条件|a﹣1.414|>0.005,a=,n=2 满足条件|a﹣1.414|>0.005,a=,n=3 满足条件|a﹣1.414|>0.005,a=,n=4 不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4. 故答案为:4. 14、 解:数列{an}是递增的等比数列,a1+a4=9,a2a3=8, 可得a1a4=8,解得a1=1,a4=8, ∴8=1×q3,q=2, 数列{an}的前n项和为:=2n﹣1. 故答案为:2n﹣1. 15、 解:设f(x)=x3+ax+b,f'(x)=3x2+a, ①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1 时f(1)=﹣5,f(﹣1)=﹣1; 并且x>1或者x<﹣1时f'(x)>0, 所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数, 所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实 根;如图 ②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图 ③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1) =﹣2+b>0,函数图象形状如图②,所以方程 x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x) =x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增 函数;故方程方程x3+ax+b=0只有一个根;⑤a=1, b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立 ,故原函数在R上是增函数;故方程方程x3+ax+b=0只 有一个根;综上满足使得该三次方程仅有一个实根的是 ①③④⑤.故答案为:①③④⑤. 16、 解:∵∠A=,AB=6,AC=3, ∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90. ∴BC=3…4分 ∵在△ABC中,由正弦定理可得:, ∴sinB=, ∴cosB=…8分 ∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB, ∴Rt△ADE中,AD===…12分 17、 解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A, 则P(A)==. (Ⅱ)X的可能取值为:200,300,400 P(X=200)==. P(X=300)==. P(X=400)=1﹣P(X=200)﹣P(X=300)=. X的分布列为: X 200 300 400 P EX=200×+300×+400×=350. 18、 解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2, 从而切线方程为y﹣2=(2n+2)(x﹣1) 令y=0,解得切线与x轴的交点的横坐标为, (2)证明:由题设和(1)中的计算结果可知: Tn=x12x32…x2n﹣12=, 当n=1时,, 当n≥2时,因为x2n﹣12==>==, 所以Tn 综上所述,可得对任意的n∈N+,均有 19、 (Ⅰ)证明:∵B1C=A1D且A1B1=CD, ∴四边形A1B1CD为平行四边形, ∴B1C∥A1D, 又∵B1C⊄平面A1EFD, ∴B1C∥平面A1EFD, 又∵平面A1EFD∩平面B1CD1=EF, ∴EF∥B1C; (Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2, ∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量, 设平面A1EFD的一个法向量为=(x,y,z), 又∵=(0,2,﹣2),=(1,1,0), ∴,, 取y=1,得=(﹣1,1,1), ∴cos<,>==, ∴二面角E﹣A1D﹣B1的余弦值为. 20、 解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴, ∵A(a,0),B(0,b),∴=. ∵,∴,a=b. ∴=. (II)由(I)可得直线AB的方程为:=1,N. 设点N关于直线AB的对称点为S,线段NS的中点T, 又AB垂直平分线段NS,∴,解得b=3, ∴a=3. ∴椭圆E的方程为:. 21、 解:(Ⅰ)设t=sinx,在x∈(﹣,)递增, 即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a, ①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减; 当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增. 即有a≥2或a≤﹣2时,不存在极值. ②当﹣2<a<2时,﹣1<t<,f′(t)<0,f(sinx)递减; <t<1,f′(t)>0,f(sinx)递增. f(sinx)有极小值f()=b﹣; (Ⅱ)﹣≤x≤时,|f(sinx)﹣f0(sinx)|=|(a﹣a0)sinx+b﹣b0|≤|a﹣a0|+|b﹣b0| 当(a﹣a0)(b﹣b0)≥0时,取x=,等号成立; 当(a﹣a0)(b﹣b0)≤0时,取x=﹣,等号成立. 由此可知,|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值为D=|a﹣a0|+|b﹣b0|. (Ⅲ)D≤1即为|a|+|b|≤1,此时0≤a2≤1,﹣1≤b≤1,从而z=b﹣≤1 取a=0,b=1,则|a|+|b|≤1,并且z=b﹣=1. 由此可知,z=b﹣满足条件D≤1的最大值为1.查看更多