内蒙古包头市第中学中考数学模拟练习题无答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

内蒙古包头市第中学中考数学模拟练习题无答案

‎2019年中考数学模拟练习题 一.选择题(共12小题,满分36分,每小题3分)‎ ‎1.(3分)某中学排球队12名队员的年龄情况如下表:‎ 年龄(岁)‎ ‎12‎ ‎13‎ ‎14‎ ‎15‎ 人数(人)‎ ‎1‎ ‎2‎ ‎5‎ ‎4‎ 则这个队员年龄的众数是(  )‎ A.12岁 B.13岁 C.14岁 D.15岁 ‎2.(3分)下列说法:①若a为有理数,且a≠0,则a<a2;②若=a,则a=1;③若a3+b3=0,则a、b互为相反数;④若|a|=﹣a,则a<0;⑤若b<0<a,且|a|<|b|,则|a+b|=﹣|a|+|b|,其中正确说法的个数是(  )个.‎ A.1 B.2 C.3 D.4‎ ‎3.(3分)一组数据:3,4,5,x,7的众数是4,则x的值是(  )‎ A.3 B.4 C.5 D.6‎ ‎4.(3分)4.(3分)下面图形不能围成一个长方体的是(  )‎ A. B. ‎ C. D.‎ ‎5.(3分)下列说法中正确的是(  )‎ A.8的立方根是±2‎ B.是一个最简二次根式 C.16的平方根是﹣4‎ D.在平面坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称 ‎6.(3分)如果一等腰三角形的周长为27,且两边的差为12,则这个等腰三角形的腰长为(  )‎ A.13 B.5 C.5或13 D.1‎ ‎7.(3分)从一副扑克牌中随机抽出一张牌,得到梅花或者K的概率是(  )‎ A. B. C. D.‎ ‎8.(3分)若关于x的不等式x﹣<1的解集为x<1,则关于x的一元二次方程x2+ax+1=0根的情况是(  )‎ A.有两个相等的实数根 B.有两个不相等的实数根 C.无实数根 D.无法确定 ‎9.(3分)如图,Rt△ABC中,AB=AC=4,以AB为直径的圆交AC于D,则图中阴影部分的面积为(  )‎ A.2π B.π+1 C.π+2 D.4+‎ ‎10.(3分)下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程=1.2中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有(  )‎ A.1个 B.2个 C.3个 D.4个 ‎11.(3分)在同一坐标系下,抛物线y1=﹣x2+4x和直线y2=2x的图象如图所示,那么不等式﹣x2+4x>2x的解集是(  )‎ A.x<0 B.0<x<2 C.x>2 D.x<0或 x>2‎ ‎12.(3分)如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AC的长是(  )‎ A.4 B.3 C.2 D.‎ 二.填空题(共8小题,满分24分,每小题3分)‎ ‎13.(3分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的2019年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为   .‎ ‎14.(3分)化简÷(1﹣)的结果为   .‎ ‎15.(3分)某校把学生的笔试、实践能力和成长记录三项成绩分别按50%、20%和30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩(单位:分)如下表,学期总评成绩优秀的学生是   .‎ ‎ ‎ 纸笔测试 ‎ 实践能力 ‎ 成长记录 ‎ 甲 ‎ ‎ 90‎ ‎83 ‎ ‎95 ‎ ‎ 乙 ‎ 88‎ ‎90 ‎ ‎95 ‎ ‎ 丙 ‎ 90‎ ‎88 ‎ ‎90 ‎ ‎16.(3分)已知方程组有正整数解,则整数m的值为   .‎ ‎17.(3分)如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点M,且MP=OM,则满足条件的∠OCP的大小为   .‎ ‎18.(3分)如图,矩形ABCD中,点E在边DC上,且AD=8,AB=AE=17,那么tan∠AEB=   .‎ ‎19.(3分)如图所示,直线y=x分别与双曲线y=(k1>0,x>0)、双曲线y=(k2>0,x>0)交于点A,点B,且OA=2AB,将直线向左平移4个单位长度后,与双曲线y=交于点C,若S△ABC=1,则k1k2的值为   .‎ ‎20.(3分)如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上.若AM:MB=AN:ND=1:2,则tan∠MCN=   .‎ 三.解答题(共6小题,满分48分,每小题8分)‎ ‎21.(8分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.‎ ‎(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;‎ ‎(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.‎ ‎22.(8分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA交AC于点E,DF∥CA交AB于点F,已知CD=3.‎ ‎(1)求AD的长;‎ ‎(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)‎ ‎23.(10分)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.‎ ‎(1)求该种水果每次降价的百分率;‎ ‎(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?‎ 时间x(天)‎ ‎ 1≤x<9‎ ‎ 9≤x<15‎ ‎ x≥15‎ 售价(元/斤)‎ ‎ 第1次降价后的价格 第2次降价后的价格 ‎ ‎ ‎ 销量(斤)‎ ‎ 80﹣3x ‎120﹣x ‎ 储存和损耗费用(元)‎ ‎ 40+3x ‎3x2﹣64x+400‎ ‎(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?‎ ‎24.(10分)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D.‎ ‎(1)求证:AC平分∠DAB;‎ ‎(2)求证:AC2=AD•AB;‎ ‎(3)若AD=,sinB=,求线段BC的长.‎ ‎25.(12分)阅读下列材料,完成任务:‎ 自相似图形 定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.‎ 任务:‎ ‎(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   ;‎ ‎(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为   ;‎ ‎(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).‎ 请从下列A、B两题中任选一条作答:我选择   题.‎ A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);‎ ‎②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);‎ B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);‎ ‎②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).‎ ‎26.如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.‎ ‎(1)求直线OA和二次函数的解析式;‎ ‎(2)当点P在直线OA的上方时,‎ ‎①当PC的长最大时,求点P的坐标;‎ ‎②当S△PCO=S△CDO时,求点P的坐标.‎
查看更多

相关文章

您可能关注的文档