- 2021-11-06 发布 |
- 37.5 KB |
- 15页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2012年浙江省金华市中考数学试卷(含答案)
2012年浙江省金华市中考数学试卷 一.选择题(共10小题) 1.(2012金华市)﹣2的相反数是( ) A.2 B.﹣2 C. D. 考点:相反数。 解答:解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2. 故选A. 2.(2012金华市)下列四个立体图形中,主视图为圆的是( ) A. B. C. D. 考点:简单几何体的三视图。 解答:解:A、主视图是正方形,故此选项错误; B、主视图是圆,故此选项正确; C、主视图是三角形,故此选项错误; D、主视图是长方形,故此选项错误; 故选:B. 3.(2012金华市)下列计算正确的是( ) A.a3a2=a6 B.a2+a4=2a2 C.(a3)2=a6 D.(3a)2=a6 考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法。 解答:解:A、a3a2=a3+2=a5,故此选项错误; B、a2和a4不是同类项,不能合并,故此选项错误; C、(a3)2=a6,故此选项正确; D、(3a)2=9a2,故此选项错误; 故选:C. 4.(2012金华市)一个正方形的面积是15,估计它的边长大小在( ) A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间 考点:估算无理数的大小;算术平方根。 解答:解:∵一个正方形的面积是15, ∴该正方形的边长为, ∵9<15<16, ∴3<<4. 故选C. 5.(2012金华市)在x=﹣4,﹣1,0,3中,满足不等式组的x值是( ) A.﹣4和0 B.﹣4和﹣1 C.0和3 D.﹣1和0 考点:解一元一次不等式组;不等式的解集。 解答:解:, 由②得,x>﹣2, 故此不等式组的解集为:﹣2<x<2, x=﹣4,﹣1,0,3中只有﹣1、0满足题意. 故选D. 6.(2012金华市)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是( ) A.2 B.3 C.4 D.8 考点:三角形三边关系。 解答:解:由题意,令第三边为X,则5﹣3<X<5+3,即2<X<8, ∵第三边长为偶数,∴第三边长是4或6. ∴三角形的三边长可以为3、5、4. 故选:C. 7.(2012金华市)如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为( ) A.6 B.8 C.10 D.12 考点:平移的性质。 解答:解:根据题意,将周长为8个单位的等边△ABC沿边BC向右平移1个单位得到△DEF, ∴AD=1,BF=BC+CF=BC+1,DF=AC; 又∵AB+BC+AC=8, ∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10. 故选;C. 8.(2012金华市)下列计算错误的是( ) A. B. C. D. 考点:分式的混合运算。 解答:解:A、,故本选项错误; B、,故本选项正确; C、=﹣1,故本选项正确; D、,故本选项正确. 故选A. 9.(2012金华市)义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是( ) A. B. C. D. 考点:列表法与树状图法。 解答:解:将一名只会翻译阿拉伯语用A表示,三名只会翻译英语都用B表示,一名两种语言都会翻译用C表示, 画树状图得: ∵共有20种等可能的结果,该组能够翻译上述两种语言的有14种情况, ∴该组能够翻译上述两种语言的概率为:=. 故选B. 10.(2012金华市)如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断: ①当x>0时,y1>y2; ②当x<0时,x值越大,M值越小; ③使得M大于2的x值不存在; ④使得M=1的x值是或. 其中正确的是( ) A.①② B.①④ C.②③ D.③④ 考点:二次函数综合题。 解答:解:∵①当x>0时,利用函数图象可以得出y2>y1;∴此选项错误; ∵抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M; ∴②当x<0时,根据函数图象可以得出x值越大,M值越大;∴此选项错误; ∵抛物线y1=﹣2x2+2,直线y2=2x+2,与y轴交点坐标为:(0,2),当x=0时,M=2,抛物线y1=﹣2x2+2,最大值为2,故M大于2的x值不存在; ∴③使得M大于2的x值不存在,此选项正确; ∵使得M=1时,可能是y1=﹣2x2+2=1,解得:x1=,x2=﹣, 当y2=2x+2=1,解得:x=﹣, 由图象可得出:当x=>0,此时对应y2=M, ∵抛物线y1=﹣2x2+2与x轴交点坐标为:(1,0),(﹣1,0), ∴当﹣1<x<0,此时对应y1=M, 故M=1时,x1=,x=﹣, 故④使得M=1的x值是或.此选项正确; 故正确的有:③④. 故选:D. 11.(2012金华市)分解因式:x2﹣9= (x+3)(x﹣3) . 考点:因式分解-运用公式法。 解答:解:x2﹣9=(x+3)(x﹣3). 12.(2012金华市)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为 50° . 考点:平行线的性质;余角和补角。 解答:解:∵∠1=40°, ∴∠3=180°﹣∠1﹣45°=180°﹣40°﹣90°=50°, ∵a∥b, ∴∠2=∠3=50°. 故答案为:50°. 13.(2012金华市)在义乌市中小学生“人人会乐器”演奏比赛中,某班10名学生成绩统计如图所示,则这10名学生成绩的中位数是 90 分,众数是 90 分. 考点:众数;折线统计图;中位数。 解答:解:观察折线图可知:成绩为90的最多,所以众数为90; 这组学生共10人,中位数是第5、6名的平均分, 读图可知:第5、6名的成绩都为90,故中位数90. 故答案为:90,90. 14.(2012金华市)正n边形的一个外角的度数为60°,则n的值为 6 . 考点:多边形内角与外角。 解答:解:∵正n边形的一个外角的度数为60°, ∴其内角的度数为:180°﹣60°=120°, ∴=120°,解得n=6. 故答案为:6. 15.(2012金华市)近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为:11,13,15,19,x(单位:万辆),这五个数的平均数为16,则x的值为 22 . 考点:算术平均数。 解答:解:根据平均数的求法:共5个数,这些数之和为: 11+13+15+19+x=16×5, 解得:x=22. 故答案为:22. 16.(2012金华市)如图,已知点A(0,2)、B(,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则: (1)当AB为梯形的底时,点P的横坐标是 ; (2)当AB为梯形的腰时,点P的横坐标是 2 . 考点:圆周角定理;等边三角形的性质;梯形;解直角三角形。 解答:解:(1)如图1:当AB为梯形的底时,PQ∥AB, ∴Q在CP上, ∵△APQ是等边三角形,CP∥x轴, ∴AC垂直平分PQ, ∵A(0,2),C(0,4), ∴AC=2, ∴PC=AC•tan30°=2×=, ∴当AB为梯形的底时,点P的横坐标是:; (2)如图2,当AB为梯形的腰时,AQ∥BP, ∴Q在y轴上, ∴BP∥y轴, ∵CP∥x轴, ∴四边形ABPC是平行四边形, ∴CP=AB=2, ∴当AB为梯形的腰时,点P的横坐标是:2. 故答案为:(1),(2)2. 17.(2012金华市)计算:|﹣2|+(﹣1)2012﹣(π﹣4)0. 考点:实数的运算;零指数幂。 解答:解:原式=2+1﹣1,(4分) =2.…(6分 18.(2012金华市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是 DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等) .(不添加辅助线). 考点:全等三角形的判定。 解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等). (2)证明:在△BDF和△CDE中 ∵ ∴△BDF≌△CDE. 19.(2012金华市)学习成为商城人的时尚,义乌市新图书馆的启用,吸引了大批读者.有关部门统计了2011年10月至2012年3月期间到市图书馆的读者的职业分布情况,统计图如下: (1)在统计的这段时间内,共有 16 万人到市图书馆阅读,其中商人所占百分比是 12.5% ,并将条形统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑); (2)若今年4月到市图书馆的读者共28000名,估计其中约有多少名职工? 考点:条形统计图;用样本估计总体;扇形统计图。 解答:解:(1)4÷25%=16 2÷16×100%=12.5% (2)职工人数约为: 28000×=10500人 …(6分) 20.(2012金华市)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°. (1)求∠ABC的度数; (2)求证:AE是⊙O的切线; (3)当BC=4时,求劣弧AC的长. 考点:切线的判定;圆周角定理;弧长的计算。 解答:解:(1)∵∠ABC与∠D都是弧AC所对的圆周角, ∴∠ABC=∠D=60°; (2)∵AB是⊙O的直径, ∴∠ACB=90°. ∴∠BAC=30°, ∴∠BAE=∠BAC+∠EAC=30°+60°=90°, 即BA⊥AE, ∴AE是⊙O的切线; (3)如图,连接OC, ∵OB=OC,∠ABC=60°, ∴△OBC是等边三角形, ∴OB=BC=4,∠BOC=60°, ∴∠AOC=120°, ∴劣弧AC的长为. 21.(2012金华市)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=. (1)求边AB的长; (2)求反比例函数的解析式和n的值; (3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长. 考点:反比例函数综合题。 解答:解:(1)∵点E(4,n)在边AB上, ∴OA=4, 在Rt△AOB中,∵tan∠BOA=, ∴AB=OA×tan∠BOA=4×=2; (2)根据(1),可得点B的坐标为(4,2), ∵点D为OB的中点, ∴点D(2,1) ∴=1, 解得k=2, ∴反比例函数解析式为y=, 又∵点E(4,n)在反比例函数图象上, ∴=n, 解得n=; (3)如图,设点F(a,2), ∵反比例函数的图象与矩形的边BC交于点F, ∴=2, 解得a=1, ∴CF=1, 连接FG,设OG=t,则OG=FG=t,CG=2﹣t, 在Rt△CGF中,GF2=CF2+CG2, 即t2=(2﹣t)2+12, 解得t=, ∴OG=t=. 22.(2012金华市)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍. (1)求小明骑车的速度和在甲地游玩的时间; (2)小明从家出发多少小时后被妈妈追上?此时离家多远? (3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程. 考点:一次函数的应用。 解答:解:(1)小明骑车速度: 在甲地游玩的时间是1﹣0.5=0.5(h). (2)妈妈驾车速度:20×3=60(km/h) 设直线BC解析式为y=20x+b1, 把点B(1,10)代入得b1=﹣10 ∴y=20x﹣10 设直线DE解析式为y=60x+b2,把点D(,0) 代入得b2=﹣80∴y=60x﹣80…(5分) ∴ 解得 ∴交点F(1.75,25). 答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km. (3)方法一:设从家到乙地的路程为m(km) 则点E(x1,m),点C(x2,m)分别代入y=60x﹣80,y=20x﹣10 得:, ∵ ∴∴m=30. 方法二:设从妈妈追上小明的地点到乙地的路程为n(km), 由题意得:∴n=5 ∴从家到乙地的路程为5+25=30(km). 23.(2012金华市)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1. (1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数; (2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积; (3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值. 考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质。 解答:解:(1)由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1, ∴∠CC1B=∠C1CB=45°,..…(2分) ∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°.…(3分) (2)∵△ABC≌△A1BC1, ∴BA=BA1,BC=BC1,∠ABC=∠A1BC1, ∴,∠ABC+∠ABC1=∠A1BC1+∠ABC1, ∴∠ABA1=∠CBC1, ∴△ABA1∽△CBC1.…(5分) ∴, ∵S△ABA1=4, ∴S△CBC1=;…(7分) (3)过点B作BD⊥AC,D为垂足, ∵△ABC为锐角三角形, ∴点D在线段AC上, 在Rt△BCD中,BD=BC×sin45°=,…(8分) ①如图1,当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1﹣BE=BD﹣BE=﹣2;…(9分) ②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为:EP1=BC+AE=2+5=7.…(10分) 24.(2012金华市)如图1,已知直线y=kx与抛物线y=交于点A(3,6). (1)求直线y=kx的解析式和线段OA的长度; (2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由; (3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个? 考点:二次函数综合题。 解答:解:(1)把点A(3,6)代入y=kx 得; ∵6=3k, ∴k=2, ∴y=2x.(2012金华市) OA=.…(3分) (2)是一个定值,理由如下: 如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H. ①当QH与QM重合时,显然QG与QN重合, 此时; ②当QH与QM不重合时, ∵QN⊥QM,QG⊥QH 不妨设点H,G分别在x、y轴的正半轴上, ∴∠MQH=∠GQN, 又∵∠QHM=∠QGN=90° ∴△QHM∽△QGN…(5分), ∴, 当点P、Q在抛物线和直线上不同位置时,同理可得. …(7分)①① (3)如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R ∵∠AOD=∠BAE, ∴AF=OF, ∴OC=AC=OA= ∵∠ARO=∠FCO=90°,∠AOR=∠FOC, ∴△AOR∽△FOC, ∴, ∴OF=, ∴点F(,0), 设点B(x,), 过点B作BK⊥AR于点K,则△AKB∽△ARF, ∴, 即, 解得x1=6,x2=3(舍去), ∴点B(6,2), ∴BK=6﹣3=3,AK=6﹣2=4, ∴AB=5 …(8分); (求AB也可采用下面的方法) 设直线AF为y=kx+b(k≠0)把点A(3,6),点F(,0)代入得 k=,b=10, ∴, ∴, ∴(舍去),, ∴B(6,2), ∴AB=5…(8分) (其它方法求出AB的长酌情给分) 在△ABE与△OED中 ∵∠BAE=∠BED, ∴∠ABE+∠AEB=∠DEO+∠AEB, ∴∠ABE=∠DEO, ∵∠BAE=∠EOD, ∴△ABE∽△OED.…(9分) 设OE=x,则AE=﹣x (), 由△ABE∽△OED得, ∴ ∴()…(10分) ∴顶点为(,) 如答图3,当时,OE=x=,此时E点有1个; 当时,任取一个m的值都对应着两个x值,此时E点有2个. ∴当时,E点只有1个…(11分) 当时,E点有2个…(12分).查看更多