- 2021-06-30 发布 |
- 37.5 KB |
- 16页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
浙江省2021届高考数学一轮复习第八章立体几何与空间向量第3节空间点直线平面之间的位置关系含解析
第3节 空间点、直线、平面之间的位置关系 考试要求 1.理解空间直线、平面位置关系的定义;2.了解可以作为推理依据的公理和定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题. 知 识 梳 理 1.平面的基本性质 (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在同一条直线上的三点,有且只有一个平面. (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 2.空间点、直线、平面之间的位置关系 直线与直线 直线与平面 平面与平面 平行关系 图形语言 符号语言 a∥b a∥α α∥β 相交关系 图形语言 符号语言 a∩b=A a∩α=A α∩β=l 独有关系 图形语言 符号语言 a,b是异面直线 a⊂α 3.平行公理(公理4)和等角定理 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 4.异面直线所成的角 (1)定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角). (2)范围:. [常用结论与易错提醒] 1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交. 2.直线与平面的位置关系在判断时最易忽视“线在面内”. 3.两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角. 诊 断 自 测 1.判断下列说法的正误. (1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( ) (2)两两相交的三条直线最多可以确定三个平面.( ) (3)如果两个平面有三个公共点,则这两个平面重合.( ) (4)若直线a不平行于平面α,且a⊄α,则α内的所有直线与a异面.( ) 解析 (1)如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故错误. (3)如果两个平面有三个公共点,则这两个平面相交或重合,故错误. (4)由于a不平行于平面α,且a⊄α,则a与平面α相交,故平面α内有与a相交的直线,故错误. 答案 (1)× (2)√ (3)× (4)× 2.(必修2P52B1(2)改编)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为( ) A.30° B.45° C.60° D.90° 解析 连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求的角.又B1D1=B1C=D1C,∴∠D1B1C=60°. 答案 C 3.在下列命题中,不是公理的是( ) A.平行于同一个平面的两个平面相互平行 B.过不在同一条直线上的三点,有且只有一个平面 C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 解析 选项A是面面平行的性质定理,是由公理推证出来的. 答案 A 4.已知直线a,b分别在两个不同的平面α ,β内,则“直线a和直线b相交”是“平面α 和平面β相交”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件. 答案 A 5.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是________. 答案 b与α相交或b∥α或b⊂α 6.如图所示,平面α,β,γ两两相交,a,b,c为三条交线,且a∥b,则a与c的位置关系是________;b与c的位置关系是________. 答案 a∥c b∥c 考点一 平面的基本性质及应用 【例1】 如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点.求证: (1)E,C,D1,F四点共面; (2)CE,D1F,DA三线共点. 证明 (1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B. 又A1B∥CD1,∴EF∥CD1, ∴E,C,D1,F四点共面. (2)∵EF∥CD1,EF查看更多
相关文章
- 当前文档收益归属上传用户