- 2021-06-30 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2021届北师大版高考理科数一轮复习高效演练分层突破:第三章 第1讲 变化率与导数、导数的计算
[基础题组练] 1.函数f(x)=(x+2a)(x-a)2的导数为( ) A.2(x2-a2) B.2(x2+a2) C.3(x2-a2) D.3(x2+a2) 解析:选C.f′(x)=(x-a)2+(x+2a)·(2x-2a)=(x-a)·(x-a+2x+4a)=3(x2-a2). 2.(2020·安徽江南十校检测)曲线f(x)=在点P(1,f(1))处的切线l的方程为( ) A.x+y-2=0 B.2x+y-3=0 C.3x+y+2=0 D.3x+y-4=0 解析:选D.因为f(x)=,所以f′(x)=,所以f′(1)=-3,又f(1)=1,所以所求切线方程为y-1=-3(x-1),即3x+y-4=0. 3.(2020·安徽宣城八校联考)若曲线y=aln x+x2(a>0)的切线的倾斜角的取值范围是,则a=( ) A. B. C. D. 解析:选B.因为y=aln x+x2(a>0),所以y′=+2x≥2,因为曲线的切线的倾斜角的取值范围是,所以斜率k≥,因此=2,所以a=.故选B. 4.如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是( ) 解析:选D.由y=f′(x)的图象知y=f′(x)在(0,+∞)上递减,说明函数y=f(x)的切线的斜率在(0,+∞)上也递减,故排除A、C.又由图象知y=f′(x)与y=g′(x)的图象在x=x0处相交,说明y=f(x)与y=g(x)的图象在x=x0处的切线的斜率相同,故排除B. 5.(2020·广东佛山教学质量检测(一))若曲线y=ex在x=0处的切线也是曲线y=ln x+b的切线,则b=( ) A.-1 B.1 C.2 D.e 解析:选C.y=ex的导数为y′=ex,则曲线y=ex在x=0处的切线斜率k=1,则曲线y=ex在x=0处的切线方程为y-1=x,即y=x+1.y=ln x+b的导数为y′=,设切点为(m,n),则=1,解得m=1,则n=2,即有2=ln 1+b,解得b=2.故选C. 6.设函数f(x)在(0,+∞)内可导,其导函数为f′(x),且f(ln x)=x+ln x,则f′(1)=________. 解析:因为f(ln x)=x+ln x,所以f(x)=x+ex, 所以f′(x)=1+ex, 所以f′(1)=1+e1=1+e. 答案:1+e 7.(2020·江西重点中学4月联考)已知曲线y=+在x=1处的切线l与直线2x+3y=0垂直,则实数a的值为________. 解析:y′=-+,当x=1时,y′=-1+.由于切线l与直线2x+3y=0垂直,所以·=-1,解得a=. 答案: 8.若过点A(a,0)作曲线C:y=xex的切线有且仅有两条,则实数a的取值范围是________. 解析:设切点坐标为(x0,x0ex0),y′=(x+1)ex,y′|x=x0=(x0+1)ex0,所以切线方程为y -x0ex0=(x0+1)ex0 (x-x0),将点A(a,0)代入可得-x0ex0=(x0+1)ex0 (a-x0),化简,得x-ax0-a=0,过点A(a,0)作曲线C的切线有且仅有两条,即方程x-ax0-a=0有两个不同的解,则有Δ=a2+4a>0,解得a>0或a<-4,故实数a的取值范围是(-∞,-4)∪(0,+∞). 答案:(-∞,-4)∪(0,+∞) 9.已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R). (1)若函数f(x)的图象过原点,且在原点处的切线斜率为-3,求a,b的值; (2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围. 解:f′(x)=3x2+2(1-a)x-a(a+2). (1)由题意得 解得b=0,a=-3或a=1. (2)因为曲线y=f(x)存在两条垂直于y轴的切线, 所以关于x的方程f′(x)=3x2+2(1-a)x-a(a+2)=0有两个不相等的实数根, 所以Δ=4(1-a)2+12a(a+2)>0, 即4a2+4a+1>0, 所以a≠-. 所以a的取值范围为∪. 10.已知函数f(x)=x3+x-16. (1)求曲线y=f(x)在点(2,-6)处的切线的方程; (2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标; (3)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程. 解:(1)可判定点(2,-6)在曲线y=f(x)上. 因为f′(x)=(x3+x-16)′=3x2+1. 所以f(x)在点(2,-6)处的切线的斜率为k=f′(2)=13. 所以切线的方程为y=13(x-2)+(-6), 即y=13x-32. (2)设切点为(x0,y0), 则直线l的斜率为f′(x0)=3x+1, 所以直线l的方程为 y=(3x+1)(x-x0)+x+x0-16, 又因为直线l过点(0,0), 所以0=(3x+1)(-x0)+x+x0-16, 整理得,x=-8, 所以x0=-2, 所以y0=(-2)3+(-2)-16=-26, k=3×(-2)2+1=13. 所以直线l的方程为y=13x,切点坐标为(-2,-26). (3)因为切线与直线y=-x+3垂直, 所以切线的斜率k=4. 设切点的坐标为(x0,y0), 则f′(x0)=3x+1=4, 所以x0=±1. 所以或 即切点坐标为(1,-14)或(-1,-18), 切线方程为y=4(x-1)-14或y=4(x+1)-18. 即y=4x-18或y=4x-14. [综合题组练] 1.在等比数列{an}中,a1=2,a8=4,函数f(x)=x(x-a1)·(x-a2)·…·(x-a8),则f′(0)=( ) A.26 B.29 C.212 D.215 解析:选C.因为f′(x)=x′·[(x-a1)(x-a2)·…·(x-a8)]+[(x-a1)·(x-a2)·…·(x-a8)]′·x=(x-a1)(x-a2)·…·(x-a8)+[(x-a1)(x-a2)·…·(x-a8)]′·x, 所以f′(0)=(0-a1)(0-a2)·…·(0-a8)+0=a1a2·…·a8. 因为数列{an}为等比数列,所以a2a7=a3a6=a4a5=a1a8=8,所以f′(0)=84=212.故选C. 2.(2020·湖北武汉4月调研)设曲线C:y=3x4-2x3-9x2+4,在曲线C上一点M(1,-4)处的切线记为l,则切线l与曲线C的公共点个数为( ) A.1 B.2 C.3 D.4 解析:选C.y′=12x3-6x2-18x,则y′|x=1=12×13-6×12-18×1=-12, 所以曲线y=3x4-2x3-9x2+4在点M(1,-4)处的切线方程为y+4=-12(x-1),即12x+y-8=0.联立解得或 或 故切线与曲线C还有其他的公共点(-2,32),, 所以切线l与曲线C的公共点个数为3.故选C. 3.(2020·安徽淮南二模)设直线l1,l2分别是函数f(x)=图象上点P1,P2处的切线.l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则A,B两点之间的距离是( ) A.1 B.2 C.3 D.4 解析:选B.设P1(x1,f(x1)),P2(x2,f(x2)), 当0查看更多