2021届浙江新高考数学一轮复习高效演练分层突破:第二章 3 第3讲 函数的奇偶性、对称性
[基础题组练]
1.(2020·舟山市普陀三中高三期中)下列函数既是奇函数,又在(0,+∞)上单调递增的是( )
A.y=-x2 B.y=x3
C.y=log2x D.y=-3-x
解析:选B.A.函数y=-x2为偶函数,不满足条件.
B.函数y=x3为奇函数,在(0,+∞)上单调递增,满足条件.
C.y=log2x的定义域为(0,+∞),为非奇非偶函数,不满足条件.
D.函数y=-3-x为非奇非偶函数,不满足条件.
2.(2020·衢州高三年级统一考试)已知f(x)是R上的奇函数,当x≥0时,f(x)=x3+ln(1+x),则当x<0时,f(x)=( )
A.-x3-ln(1-x) B.x3+ln(1-x)
C.x3-ln(1-x) D.-x3+ln(1-x)
解析:选C.当x<0时,-x>0,f(-x)=(-x)3+ln(1-x),因为f(x)是R上的奇函数,所以当x<0时,f(x)=-f(-x)=-[(-x)3+ln(1-x)],所以f(x)=x3-ln(1-x).
3.若f(x)=(ex-e-x)(ax2+bx+c)是偶函数,则一定有( )
A.b=0 B.ac=0
C.a=0且c=0 D.a=0,c=0且b≠0
解析:选C.设函数g(x)=ex-e-x.g(-x)=e-x-ex=-g(x),所以g(x)是奇函数.因为f(x)=g(x)(ax2+bx+c)是偶函数.所以h(x)=ax2+bx+c为奇函数.即h(-x)+h(x)=0恒成立,有ax2+c=0恒成立.所以a=c=0.当a=c=b=0时,f(x)=0,也是偶函数,故选C.
4.设f(x)是定义在实数集上的函数,且f(2-x)=f(x),若当x≥1时,f(x)=ln x,则有( )
A.f
0时,不等式≤0等价于3f(-x)-2f(x)≤0,又f(x)是奇函数,所以有f(x)≥0,所以有00)的最大值为M,最小值为N,且M+N=4,则实数t的值为________.
解析:因为f(x)==t+=t+g(x),其中g(x)是奇函数,M+N=t+g(x)+t+g(-x)=2t=4⇒t=2.
答案:2
9.(2020·杭州市富阳二中高三质检)已知定义在R上的函数f(x)满足:①f(1+x)=f(1-x);②在[1,+∞)上为增函数,若x∈时,f(ax)2-x成立,求实数k的取值范围.
解:(1)因为f(x)=2x+k·2-x是奇函数,
所以f(-x)=-f(x),k∈R,
即2-x+k·2x=-(2x+k·2-x),
所以(k+1)·(1+22x)=0对一切k∈R恒成立,
所以k=-1.
(2)因为x∈[0,+∞),均有f(x)>2-x,
即2x+k·2-x>2-x对x∈[0,+∞)恒成立,
所以1-k<22x对x∈[0,+∞)恒成立,
所以1-k<(22x)min,
因为y=22x在[0,+∞)上单调递增,
所以(22x)min=1.所以1-k<1,解得k>0.
所以实数k的取值范围为(0,+∞).
12.(2020·绍兴一中高三期中)已知f(x)为偶函数,当x≥0时,f(x)=-(x-1)2+1,求满足f[f(a)]=的实数a的个数.
解:令f(a)=x,则f[f(a)]=变形为f(x)=;
当x≥0时,f(x)=-(x-1)2+1=,
解得x1=1+,x2=1-;
因为f(x)为偶函数,所以当x<0时,f(x)=的解为x3=-1-,x4=-1+;
综上所述,f(a)=1+,1-,-1-,-1+;
当a≥0时,
f(a)=-(a-1)2+1=1+,方程无解;
f(a)=-(a-1)2+1=1-,方程有2解;
f(a)=-(a-1)2+1=-1-,方程有1解;
f(a)=-(a-1)2+1=-1+,方程有1解;
故当a≥0时,方程f(a)=x有4解,由偶函数的性质,易得当a<0时,方程f(a)=x也有4解,
综上所述,满足f[f(a)]=的实数a的个数为8.
[综合题组练]
1.已知f(x)是奇函数,且当x<0时,f(x)=x2+3x+2.若当x∈[1,3]时,n≤f(x)≤m恒成立,则m-n的最小值为 ( )
A. B.2
C. D.
解析:选A.设x>0,则-x<0,所以f(x)=-f(-x)=-[(-x)2+3(-x)+2]=-x2+3x-2.所以在[1,3]上,当x=时,f(x)max=;当x=3时,f(x)min=-2.所以m≥且n≤-2.故m-n≥.
2.(2020·宁波效实中学高三月考)对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a-x),则称f(x)为准偶函数.下列函数中是准偶函数的是( )
A.f(x)= B.f(x)=x2
C.f(x)=tan x D.f(x)=cos(x+1)
解析:选D.由f(x)为准偶函数的定义可知,若f(x)的图象关于x=a(a≠0)对称,则f(x)为准偶函数,A,C中两函数的图象无对称轴,B中函数图象的对称轴只有x=0,而D中f(x)=cos(x+1)的图象关于x=kπ-1(k∈Z)对称.
3.已知函数f(x)=a-.若f(x)为奇函数,则a=________.
解析:法一:因为f(x)是奇函数,所以f(-x)=-f(x),
即a-=-,则2a=+=+==1,所以a=.
法二:因为f(x)为奇函数,定义域为R,所以f(0)=0.
所以a-=0,所以a=.经检验,当a=时,f(x)是一个奇函数.
答案:
4.已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)-g(x)=,则f(1),g(0),g(-1)之间的大小关系是________.
解析:在f(x)-g(x)=中,用-x替换x,得f(-x)-g(-x)=2x,由于f(x),g(x)分别是定义在R上的奇函数和偶函数,所以f(-x)=-f(x),g(-x)=g(x),因此得-f(x)-g(x)=2x.联立方程组解得f(x)=,g(x)=-,于是f(1)=-,g(0)=-1,g(-1)=-,故f(1)>g(0)>g(-1).
答案:f(1)>g(0)>g(-1)
5.(2020·杭州学军中学高三质检)已知函数y=f(x)在定义域[-1,1]上既是奇函数,又是减函数.
(1)求证:对任意x1,x2∈[-1,1],有[f(x1)+f(x2)]·(x1+x2)≤0;
(2)若f(1-a)+f(1-a2)<0,求实数a的取值范围.
解:(1)证明:若x1+x2=0,显然不等式成立.
若x1+x2<0,则-1≤x1<-x2≤1,
因为f(x)在[-1,1]上是减函数且为奇函数,
所以f(x1)>f(-x2)=-f(x2),
所以f(x1)+f(x2)>0.
所以[f(x1)+f(x2)](x1+x2)<0成立.
若x1+x2>0,则1≥x1>-x2≥-1,
同理可证f(x1)+f(x2)<0.
所以[f(x1)+f(x2)](x1+x2)<0成立.
综上得证,对任意x1,x2∈[-1,1],有[f(x1)+f(x2)]·(x1+x2)≤0恒成立.
(2)因为f(1-a)+f(1-a2)<0⇔f(1-a2)<-f(1-a)=f(a-1),所以由f(x)在定义域[-1,1]上是减函数,得即解得0≤a<1.
故所求实数a的取值范围是[0,1).
6.(2020·宁波市余姚中学高三模拟)设常数a∈R,函数f(x)=(a-x)|x|.
(1)若a=1,求f(x)的单调区间;
(2)若f(x)是奇函数,且关于x的不等式mx2+m>f[f(x)]对所有的x∈[-2,2]恒成立,求实数m的取值范围.
解:(1)当a=1时,f(x)=(1-x)|x|=,
当x≥0时,f(x)=(1-x)x=-+,
所以f(x)在内是增函数,
在内是减函数;
当x<0时,f(x)=(x-1)x=-,
所以f(x)在(-∞,0)内是减函数;
综上可知,f(x)的单调增区间为,
单调减区间为(-∞,0),.
(2)因为f(x)是奇函数,所以f(-1)=-f(1),
即(a+1)·1=-(a-1)·1,解得a=0.
所以f(x)=-x|x|,f[f(x)]=x3|x|;
所以mx2+m>f[f(x)]=x3|x|,
即m>对所有的x∈[-2,2]恒成立.
因为x∈[-2,2],所以x2+1∈[1,5].
所以≤==x2+1+-2≤.
所以m>.
所以实数m的取值范围为.