- 2021-06-30 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2021届浙江新高考数学一轮复习高效演练分层突破:第二章 8 第8讲 函数与方程
[基础题组练] 1.(2020·浙江省名校联考)已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表: x 1 2 3 4 5 6 y 124.4 33 -74 24.5 -36.7 -123.6 则函数y=f(x)在区间[1,6]上的零点至少有( ) A.2个 B.3个 C.4个 D.5个 解析:选B.依题意,f(2)>0,f(3)<0,f(4)>0,f(5)<0,根据零点存在性定理可知,f(x)在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y=f(x)在区间[1,6]上的零点至少有3个. 2.(2020·温州十校联考(一))设函数f(x)=ln x+x-2,则函数f(x)的零点所在的区间为( ) A.(0,1) B.(1,2) C.(2,3) D.(3,4) 解析:选B.法一:因为f(1)=ln 1+1-2=-1<0,f(2)=ln 2>0,所以f(1)·f(2)<0,因为函数f(x)=ln x+x-2的图象是连续的,所以函数f(x)的零点所在的区间是(1,2). 法二:函数f(x)的零点所在的区间为函数g(x)=ln x,h(x)=-x+2图象交点的横坐标所在的区间,作出两函数的图象如图所示,由图可知,函数f(x)的零点所在的区间为(1,2). 3.已知函数f(x)=-cos x,则f(x)在[0,2π]上的零点个数为( ) A.1 B.2 C.3 D.4 解析:选C.作出g(x)=与h(x)=cos x的图象如图所示,可以看到其在[0,2π]上的交点个数为3,所以函数f(x)在[0,2π]上的零点个数为3,故选C. 4.已知函数f(x)=-tan x,若实数x0是函数y=f(x)的零点,且0查看更多