- 2021-06-30 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学专题复习练习第1讲 平面向量的概念及其线性运算
第1讲 平面向量的概念及其线性运算 一、选择题 1. 已知两个非零向量a,b满足|a+b|=|ab|,则下面结论正确的是( ) A.a∥b B. a⊥b C.{0,1,3} D.a+b=ab 答案 B 2.对于非零向量a,b,“a+b=0”是“a∥b”的( ). A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 若a+b=0,则a=-b. ∴a∥b; 若a∥b,则a=λb,a+b=0不一定成立. 答案 A 3.已知O是△ABC所在平面内一点,D为BC边的中点,且2++=0,那么 ( ). A.= B.=2 C.=3 D.2= 解析 由2++=0可知,O是底边BC上的中线AD的中点,故=. 答案 A 4.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若=λ(λ∈R) ,=μ(μ∈R),且+=2,则称A3,A4调和分割A1,A2.已知平面上的点C,D调和分割点A,B,则下列说法正确的是 ( ). A.C可能是线段AB的中点 B.D可能是线段AB的中点 C.C、D可能同时在线段AB上 D.C、D不可能同时在线段AB的延长线上 解析 若A成立,则λ=,而=0,不可能;同理B也不可能;若C成立,则0<λ<1,且0<μ<1,+>2,与已知矛盾;若C,D同时在线段AB的延长线上时,λ>1,且μ>1,+<2,与已知矛盾,故C,D不可能同时在线段AB的延长线上,故D正确. 答案 D 5.已知A,B,C 是平面上不共线的三点,O是△ABC的重心,动点P满足=,则点P一定为三角形ABC的 ( ). A.AB边中线的中点 B.AB边中线的三等分点(非重心) C.重心 D.AB边的中点 解析 设AB的中点为M,则+=,∴=(+2)=+,即3=+2,也就是=2,∴P,M,C三点共线,且P是CM上靠近C点的一个三等分点. 答案 B 6.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,则四边形ABCD的形状是( ). A.矩形 B.平行四边形 C.梯形 D.以上都不对 解析 由已知=++=-8a-2b=2(-4a-b)=2. ∴∥,又与不平行, ∴四边形ABCD是梯形. 答案 C 二、填空题 7.设a,b是两个不共线向量,=2a+pb,=a+b,=a-2b,若A,B,D三点共线,则实数p的值为________. 解析 ∵=+=2a-b,又A,B,D三点共线, ∴存在实数λ,使=λ. 即∴p=-1. 答案 -1 8. 如图,在矩形ABCD中,||=1,||=2,设=a,=b,=c,则|a+b+c|=________. 解析 根据向量的三角形法则有|a+b+c|=|++|=|++|=|+|=2||=4. 答案 4 9.若点O是△ABC所在平面内的一点,且满足|-|=|+-2|,则△ABC的形状为________. 解析 +-2=-+-=+, -==-,∴|+|=|-|. 故A,B,C为矩形的三个顶点,△ABC为直角三角形. 答案 直角三角形 10.若M为△ABC内一点,且满足=+,则△ABM与△ABC的面积之比为________. 解析 由题知B、M、C三点共线,设=λ,则:-=λ(-), ∴=(1-λ)+λ, ∴λ=, ∴=. 答案 三、解答题 11.如图所示,△ABC中,=,DE∥BC交AC于E,AM是BC边上的中线,交DE于N.设=a,=b,用a,b分别表示向量,,,,,. 解 =b,=b-a,=(b-a),=(b-a), =(a+b),=(a+b). 12. (1)设两个非零向量e1,e2不共线,如果=2e1+3e2,=6e1+23e2,=4e1-8e2,求证:A,B,D三点共线. (2)设e1,e2是两个不共线的向量,已知=2e1+ke2,=e1+3e2,=2e1-e2,若A,B,D三点共线,求k的值. (1)证明 因为=6e1+23e2,=4e1-8e2, 所以=+=10e1+15e2. 又因为=2e1+3e2,得=5,即∥, 又因为,有公共点B,所以A,B,D三点共线. (2)解 D=-=e1+3e2-2e1+e2=4e2-e1, =2e1+ke2, 若A,B,D共线,则∥D, 设D=λ,所以⇒k=-8. 13. 如图所示,在△ABC中,在AC上取一点N,使得AN=AC,在AB上取一点M,使得AM=AB,在BN的延长线上取点P,使得NP=BN,在CM的延长线上取点Q,使得=λ时,=,试确定λ的值. 解 ∵=-=(-)=(+)=,=-=+λ, 又∵=,∴+λ=, 即λ=,∴λ=. 14.已知O,A,B三点不共线,且=m+n,(m,n∈R). (1)若m+n=1,求证:A,P,B三点共线; (2)若A,P,B三点共线,求证:m+n=1. 证明 (1)m,n∈R,且m+n=1, ∴=m+n=m+(1-m), 即-=m(-). ∴=m,而≠0,且m∈R. 故与共线,又,有公共点B. ∴A,P,B三点共线. (2)若A,P,B三点共线,则与共线,故存在实数λ,使=λ,∴-=λ(-). 即=λ+(1-λ). 由=m+n. 故m+n=λ+(1-λ). 又O,A,B不共线,∴,不共线. 由平面向量基本定理得 ∴m+n=1.查看更多