2019-2020学年高中数学课时跟踪检测十八离散型随机变量的方差新人教A版选修2-3
课时跟踪检测(十八) 离散型随机变量的方差
A级——基本能力达标
1.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计( )
A.甲种水稻比乙种水稻分蘖整齐
B.乙种水稻比甲种水稻分蘖整齐
C.甲、乙两种水稻分蘖整齐程度相同
D.甲、乙两种水稻分蘖整齐程度不能比较
解析:选B ∵D(X甲)>D(X乙),∴乙种水稻比甲种水稻分蘖整齐.
2.(2019·浙江名校联考信息卷)已知随机变量ξ~B,则D(3ξ-1)=( )
A. B.
C. D.10
解析:选D 因为随机变量ξ~B,所以D(ξ)=5××=,所以D(3ξ-1)=32D(ξ)=9×=10.
3.设随机变量X的概率分布列为P(X=k)=pk·(1-p)1-k(k=0,1),则E(X),D(X)的值分别是( )
A.0和1 B.p和p2
C.p和1-p D.p和(1-p)p
解析:选D 由X的分布列知,P(X=0)=1-p,P(X=1)=p,故E(X)=0×(1-p)+1×p=p,易知X服从两点分布,∴D(X)=p(1-p).
4.设10≤x1
D(ξ2)
B.D(ξ1)=D(ξ2)
C.D(ξ1)D(ξ2).
7
5.已知袋子中装有若干张标有数字1,2,3的卡片,每张卡片上分别标有一个数字,若随机抽取一张卡片,取到标有数字1的卡片的概率为,若抽取的卡片上的数字X的数学期望是2,则X的方差是( )
A. B.
C. D.1
解析:选B 由题意得P(X=1)=,设P(X=2)=p,P(X=3)=q,则p+q=,又E(X)=2,所以1×+2p+3q=2,解得p=,q=.所以D(X)=×(1-2)2+×(2-2)2+×(3-2)2=.
6.若事件在一次试验中发生次数的方差等于0.25,则该事件在一次试验中发生的概率为________.
解析:事件在一次试验中发生次数记为ξ,则ξ服从两点分布,则D(ξ)=p(1-p),所以p(1-p)=0.25,解得p=0.5.
答案:0.5
7已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p=________.
解析:由E(X)=30,D(X)=20,可得
解得p=.
答案:
8.已知离散型随机变量X的分布列如下表:
X
-1
0
1
2
P
a
b
c
若E(X)=0,D(X)=1,则a=________,b=________.
解析:由题意
解得a=,b=c=.
7
答案:
9.A,B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析,X1和X2的分布列分别为
X1
5%
10%
P
0.8
0.2
X2
2%
8%
12%
P
0.2
0.5
0.3
在A,B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1),D(Y2).
解:由题设可知Y1和Y2的分布列分别为
Y1
5
10
P
0.8
0.2
Y2
2
8
12
P
0.2
0.5
0.3
E(Y1)=5×0.8+10×0.2=6,
D(Y1)=(5-6)2×0.8+(10-6)2×0.2=4;
E(Y2)=2×0.2+8×0.5+12×0.3=8,
D(Y2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3=12.
10.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.
(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;
(2)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X的均值和方差.
解:设事件A表示“该地的1位车主购买甲种保险”,事件B表示“该地的1位车主购买乙种保险但不购买甲种保险”,事件C表示“该地的1位车主至少购买甲、乙两种保险中的1种”,事件D表示“该地的1位车主甲、乙两种保险都不购买”,则A,B相互独立.
(1)由题意知P(A)=0.5,P(B)=0.3,C=A∪B,
则P(C)=P(A∪B)=P(A)+P(B)=0.8.
(2)D=,P(D)=1-P(C)=1-0.8=0.2.
7
由题意知X~B(100,0.2),
所以均值E(X)=100×0.2=20,方差D(X)=100×0.2×0.8=16.
B级——综合能力提升
1.设二项分布X~B(n,p)的随机变量X的均值与方差分别是2.4和1.44,则二项分布的参数n,p的值为( )
A.n=4,p=0.6 B.n=6,p=0.4
C.n=8,p=0.3 D.n=24,p=0.1
解析:选B 由题意得,np=2.4,np(1-p)=1.44,
∴1-p=0.6,∴p=0.4,n=6.
2.若ξ是离散型随机变量,P(ξ=x1)=,P(ξ=x2)=,且x1
查看更多