2012年高考数学真题分类汇编I 统计 (理科)
I 统计
I1 随机抽样
9.I1[2012·天津卷] 某地区有小学150所,中学75所,大学25所,现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.
9.18 9 [解析] 本题考查简单随机抽样中的分层抽样,考查运算求解能力,容易题.
设从小学抽取m所,中学抽取n所,由分层抽样的特点得==,解之得m=18,n=9.
4.I1[2012·山东卷] 采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为( )
A.7 B.9 C.10 D.15
4.C [解析] 本题考查系统抽样,考查数据处理能力,中档题.
第n个抽到的编号为9+×30=30n-21,由题意得451≤30n-21≤750,解之得
15≤n≤25,又∵n∈Z,∴满足条件的n共有10个.
2.I1[2012·江苏卷] 某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.
2.15 [解析] 本题考查简单随机抽样中的分层抽样.解题突破口为直接运用分层抽样的定义即可.由题意可得高二年级应该抽取学生50×=15(名).
17.K8、I1、I2[2012·北京卷] 近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):
“厨余垃圾”箱
“可回收物”箱
“其他垃圾”箱
厨余垃圾
400
100
100
可回收物
30
240
30
其他垃圾
20
20
60
(1)试估计厨余垃圾投放正确的概率;
(2)试估计生活垃圾投放错误的概率;
(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.
注:s2=[(x1-)2+(x2-)2+…+(xn-)2],其中为数据x1,x2,…,xn的平均数
17.解:(1)厨余垃圾投放正确的概率约为
==.
(2)设生活垃圾投放错误为事件A,
则事件表示生活垃圾投放正确.
事件的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,
即P()约为=0.7,
所以P(A)约为1-0.7=0.3.
(3)当a=600,b=c=0时,s2取得最大值.
因为=(a+b+c)=200,
所以s2=[(600-200)2+(0-200)2+(0-200)2]=80 000.
I2 用样本估计总体
17.I2[2012·上海卷] 设10≤x1
Dξ2.
6.I2[2012·陕西卷] 从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图1-2所示),设甲乙两组数据的平均数分别为甲,乙,中位数分别为m甲,m乙,则( )
图1-2
A.甲<乙,m甲>m乙
B.甲<乙,m甲乙,m甲>m乙
D.甲>乙,m甲m C.n=m D.不能确定
9.A [解析] 考查平均数的计算、不等式的性质等;解题的突破口是利用样本平均数的计算公式,建立m,n,α之间的关系后求解.∵=(n+m)= ,∴=α,∵0<α<,∴0<<,∴n0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.
注:s2=[(x1-)2+(x2-)2+…+(xn-)2],其中为数据x1,x2,…,xn的平均数
17.解:(1)厨余垃圾投放正确的概率约为
==.
(2)设生活垃圾投放错误为事件A,
则事件表示生活垃圾投放正确.
事件的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,
即P()约为=0.7,
所以P(A)约为1-0.7=0.3.
(3)当a=600,b=c=0时,s2取得最大值.
因为=(a+b+c)=200,
所以s2=[(600-200)2+(0-200)2+(0-200)2]=80 000.
I3 正态分布
15.K5、I3[2012·课标全国卷] 某一部件由三个电子元件按图1-4方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为________.
图1-4
15.[答案]
[解析] 解法一:设该部件的使用寿命超过1000小时的概率为P(A).因为三个元件的使用寿命均服从正态分布N(1 000,502),所以元件1,2,3的使用寿命超过1 000小时的概率分别为P1=,P2=,P3=.因为P()=P3+=××+=,所以P(A)=1-P()=.
解法二:设该部件的使用寿命超过1000小时的概率为P(A).因为三个元件的使用寿命均服从正态分布N(1000,502),所以元件1,2,3的使用寿命超过1000小时的概率分别为P1=,P2=,P3=.故P(A)=P1P3+P2P3+P1P2P3=××+××+××=.
I4 变量的相关性与统计案例
4.I4[2012·湖南卷] 设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是( )
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(,)
C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kg
D.若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg
4.D [解析] 本题考查线性回归方程的特征与性质,意在考查考生对线性回归方程的了解,解题思路:A,B,C均正确,是回归方程的性质,D项是错误的,线性回归方程只能预测学生的体重.选项D应改为“若该大学某女生身高为170 cm,则估计其体重大约为58.79 kg”.
[易错点] 本题易错一:对线性回归方程不了解,无法得出答案;易错二:对回归系数b不了解,错选C;易错三:线性回归方程有预测的作用,得出的结果不是准确结果,误以为D项是对的.
19.I2、I4、K6、K8[2012·辽宁卷] 电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图.
图1-6
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷
体育迷
合计
男
女
10
55
合计
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中.采用随机抽样方法每次抽取1名观众,抽取3次.记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).
附:χ2=,
P(χ2≥k)
0.05
0.01
k
3.841
6.635
19.解:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:
非体育迷
体育迷
合计
男
30
15
45
女
45
10
55
合计
75
25
100
将2×2列联表中的数据代入公式计算,得
χ2===≈3.030.
因为3.030<3.841,所以没有理由认为“体育迷”与性别有关.
(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为.
由题意X~B,从而X的分布列为
X
0
1
2
3
P
E(X)=np=3×=.
D(X)=np(1-p)=3××=.
I5 单元综合