- 2021-06-16 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
北师大版高三数学复习专题-集合与常用逻辑用语基础达标-第1章第3节
第一章 第三节 一、选择题 1.(文)(2014·湖南高考改编)设命题 p:任意 x∈R,x2+1>0,则非 p 为( ) A.存在 x0∈R,x20+1>0 B.存在 x0∈R,x20+1≤0 C.任意 x0∈R,x20+1<0 D.任意 x∈R,x2+1≤0 [答案] B [解析] 全称命题的否定,要对结论进行否定,同时要把全称量词换成存在量词,故命 题 p 的否定为“存在 x0∈R,x20+1≤0”,所以选 B. (理)(2014·湖南高考改编)已知命题 p:若 x>y,则-x<-y;命题 q:若 x>y,则 x2>y2.在 命题①p 且 q;②p 或 q;③p 且(非 q);④(非 p)或 q 中,真命题是( ) A.①③ B.①④ C.②③ D.②④ [答案] C [解析] 由不等式的性质可知,命题 p 是真命题,命题 q 为假命题,故①p 且 q 为假命 题,②p 或 q 为真命题,③非 q 为真命题,则 p 且(非 q)为真命题,④非 p 为假命题,则(非 p)或 q 为假命题,所以选 C. 2.(文)若 p 是真命题,q 是假命题,则( ) A.p 且 q 是真命题 B.p 或 q 是假命题 C.非 p 是真命题 D.非 q 是真命题 [答案] D [解析] 根据命题真值表知,q 是假命题,非 q 是真命题. (理)命题 p:x2+y2<0;q:x2+y2≥0.下列命题为假命题的是( ) A.p 或 q B.p 且 q C.q D.非 p [答案] B [解析] 命题 p 为假,命题 q 为真,故 p 且 q 为假. 3.如果命题“非(p 或 q)”是假命题,则下列命题中正确的是( ) A.p、q 均为真命题 B.p、q 中至少有一个为真命题 C.p、q 均为假命题 D.p、q 中至多有一个为真命题 [答案] B [解析] “非(p 或 q)”是假命题,则命题“p 或 q”为真,所以 p、q 中至少有一个为真 命题. 4.(2013·新课标Ⅰ)已知命题 p:任意 x∈R,2x<3x;命题 q:存在 x∈R,x3=1-x2,则 下列命题中为真命题的是( ) A.p 且 q B.非 p 且 q C.p 且非 q D.非 p 且非 q [答案] B [解析] 本题考查由“且”构成的复合命题的真假.由函数 y=2x 与 y=3x 的图像可判 断,当 x<0 时,2x>3x,p 为假,非 p 为真;由函数 y=x3 与 y=1-x2 的图像可判断 q 为真命 题,所以非 p 且 q 为真命题,选 B. 5.(2014·天津高考)已知命题 p:任意 x>0,总有(x+1)ex>1,则非 p 为( ) A.存在 x0≤0,使得(x0+1)ex0≤1 B.存在 x0>0,使得(x0+1)ex0≤1 C.任意 x>0,总有(x+1)ex≤1 D.任意 x≤0,总有(x+1)ex≤1 [答案] B [解析] 由命题的否定只否定命题的结论及全称命题的否定为特称(存在性)命题,“>” 的否定为“≤”知选 B. 6.下列各组命题中,满足“p 或 q 为真”,且“非 p 为真”的是( ) A.p:0=∅;q:0∈∅ B.p:在△ABC 中,若 cos2A=cos2B,则 A=B; q:y=sinx 在第一象限是增函数 C.p:a+b≥2 ab(a,b∈R); q:不等式|x|>x 的解集为(-∞,0) D.p:圆(x-1)2+(y-2)2=1 的面积被直线 x=1 平分;q:椭圆x2 4 +y2 3 =1 的离心率为 e =1 2 [答案] C [解析] A 中,p、q 均为假,故“p 或 q 为假”,排除 A; B 中,cos2A=cos2B⇔1-2sin2A=1-2sin2B ⇔sin2A-sin2B=0⇔(sinA+sinB)(sinA-sinB)=0 ⇒A-B=0,故 p 为真,从而“非 p”为假,排除 B; C 中,p 为假,从而“非 p”为真,q 为真,从而“p 或 q”为真;D 中,p 为真,故非 p 为假. 二、填空题 7.(文)“若 a∉M 或 a∉P,则 a∉M∩P”的逆否命题是__________________________. [答案] 若 a∈M∩P,则 a∈M 且 a∈P [解析] 命题“若 p 则 q”的逆否命题是“若非 q 则非 p”,本题中“a∉M 或 a∉P”的 否定是“a∈M 且 a∈P”. (理)命题“如果 x-2+(y+1)2=0,则 x=2 且 y=-1”的逆否命题为________. [答案] 如果 x≠2 或 y≠-1,则 x-2+(y+1)2≠0 8.命题 p:{2}∈{1,2,3},q:{2}⊆{1,2,3},则对复合命题的下述判断:①p 或 q 为真; ②p 或 q 为假;③p 且 q 为真;④p 且 q 为假;⑤非 p 为真;⑥非 q 为假.其中判断正确的 序号是________.(填上你认为正确的所有序号) [答案] ①④⑤⑥ [解析] p:{2}∈{1,2,3},q:{2}⊆{1,2,3},p 假 q 真,故①④⑤⑥正确. 9.(文)命题“存在 x∈R,2x2-3ax+9<0”为假命题,则实数 a 的取值范围为________. [答案] [-2 2,2 2] [解析] 由题意知命题“任意 x∈R,2x2-3ax+9≥0”为真命题,所以只需Δ=9a2- 4×2×9≤0, 即-2 2≤a≤2 2. (理)已知命题 p:任意 x∈R,ax2+2x+3>0,如果命题非 p 是真命题,那么实数 a 的取 值范围是________. [答案] a≤1 3 [解析] 因为命题非 p 是真命题,所以命题 p 是假命题,而当命题 p 是真命题时,就是 不等式 ax2+2x+3>0 对一切 x∈R 恒成立,这时应有 a>0 Δ=4-12a<0 ,解得 a>1 3 ,因此当命 题 p 是假命题,即命题非 p 是真命题时实数 a 的取值范围是 a≤1 3. 三、解答题 10.已知命题 p:存在实数 m,使方程 x2+mx+1=0 有两个不等的负根;命题 q:存在 实数 m,使方程 4x2+4(m-2)x+1=0 无实根.若“p 或 q”为真,“p 且 q”为假,求 m 的 取值范围. [分析] 利用已知条件构造关于 m 的不等式组,进而求得 m 的取值范围,注意命题真 假的要求. [解析] 存在实数 m,使方程 x2+mx+1=0 有两个不等的负根,则 Δ=m2-4>0 m>0 ,解 得 m>2,即 m>2 时,p 真. 存在实数 m,使方程 4x2+4(m-2)x+1=0 无实根, 则Δ=16(m-2)2-16=16(m2-4m+3)<0, 解得 1查看更多