- 2021-05-13 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
上海市中考数学卷试题与答案全word
2011年上海市初中毕业统一学业考试数学卷 满分150分 考试时间100分钟 一、选择题(本大题共6题,每题4分,共24分) 1.下列分数中,能化为有限小数的是( ). (A) ; (B) ; (C) ; (D) . 2.如果a>b,c<0,那么下列不等式成立的是( ). (A) a+c>b+c; (B) c-a>c-b; (C) ac>bc; (D) . 3.下列二次根式中,最简二次根式是( ). (A) ; (B) ; (C) ; (D) . 4.抛物线y=-(x+2)2-3的顶点坐标是( ). (A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) . 5.下列命题中,真命题是( ). (A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等; (C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等. 6.矩形ABCD中,AB=8,,点P在边AB上,且BP=3AP,如果圆P是以点P 为圆心,PD为半径的圆,那么下列判断正确的是( ). (A) 点B、C均在圆P外; (B) 点B在圆P外、点C在圆P内; (C) 点B在圆P内、点C在圆P外; (D) 点B、C均在圆P内. 二、填空题(本大题共12题,每题4分,共48分) 7.计算:__________. 8.因式分解:_______________. 9.如果关于x的方程(m为常数)有两个相等实数根,那么m=______. 10.函数的定义域是_____________. 11.如果反比例函数(k是常数,k≠0)的图像经过点(-1,2),那么这个函数的解 析式是__________. 12.一次函数y=3x-2的函数值y随自变量x值的增大而_____________(填“增大”或 “减小”). 13.有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取 1只杯子,恰好是一等品的概率是__________. 14.某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880 平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________. 15.如图1,AM是△ABC的中线,设向量,,那么向量____________ (结果用、表示). 16. 如图2, 点B、C、D在同一条直线上,CE//AB,∠ACB=90°,如果∠ECD=36°, 那么∠A=_________. 17.如图3,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果 MN=3,那么BC=_________. 18.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(图4).把△ABC 绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上, 那么m=_________. 图1 图2 图3 图4 三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:(-3)0-+|1-|+. 20.(本题满分10分)解方程组: 21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 如图5,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2, CD平行于AB,并与弧AB相交于点M、N. (1)求线段OD的长; (2)若,求弦MN的长. 图5 22.(本题满分10分,第(1)、(2)小题满分各2分,第(3)、(4)小题满分各3分) 据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图6)、扇形图(图7). (1)图7中所缺少的百分数是____________; (2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是________________(填写年龄段); (3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是_____________; (4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有_______________名. 图6 图7 23.(本题满分12分,每小题满分各6分) 如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.联结BF、CD、AC. (1)求证:四边形ABFC是平行四边形; (2)如果DE2=BE·CE,求证四边形ABFC是矩形. 24.(本题满分12分,每小题满分各4分) 图1 已知平面直角坐标系xOy(如图1),一次函数的图 像与y轴交于点A,点M在正比例函数的图像上,且 MO=MA.二次函数y=x2+bx+c的图像经过点A、M. (1)求线段AM的长; (2)求这个二次函数的解析式; (3)如果点B在y轴上,且位于点A下方,点C在上述二 次函数的图像上,点D在一次函数的图像上,且四边形ABCD是菱形,求 点C的坐标. 25.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分) 在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,. (1)如图1,当点E与点C重合时,求CM的长; (2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域; (3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长. 图1 图2 备用图 2011年 上海市初中毕业统一学业数学卷 答案及评分参考 (满分150分,考试时间100分钟) 一、选择题 (本大题共6题,每题4分,满分24分) 题号 1 2 3 4 5 6 答案 B A C D D C 二、填空题 (本大题共12题,每题4分,满分48分) 题号 7 8 9 10 11 12 13 14 15 16 17 18 答案 a5 (x+3y)(x-3y) 1 x£3 y= - 增大 20% a+b 54 6 80或120 三、解答题 (本题共30分,每小题5分) 19. (本题满分10分) [解] (-3)0-+|1-|+ =1-3+-1+- = -2。 20. (本题满分10分) [解] (x,y)=(1, -1)或(3, 1)。 21. (本题满分10分,第(1)小题满分4分,第(2)小题满分6分) [解] (1) OD=5 (根据平行可证得△COD是等腰三角形,OD=OC=5), (2) 过点O作OE^MN,垂足为点E,并连结OM,根据tanC=与OC=5, ÞOE=,在Rt△OEM中,利用勾股定理,得ME=2,即AM=2ME=4。 22. (本题满分10分,第(1)、(2)小题满分各2分,第(3)、(4)小题满分各3分) [解] (1) 12%, (2) 36~45, (3) 5%, (4) 700人。 23. (本题满分12分,每小题满分各6分) [解] (1) 等腰梯形ABCD中,AB=DC,ÐB=ÐDCB,∵ △DFC是等腰三角形,∴ ÐDCB=ÐFCE, DC=CF,所以ÐB=ÐFCE,AB=CF,易证四边形ABFC是平行四边形。 (2) 提示:射影定理的逆定理不能直接在中考中使用,必须通过相似三角形来证明,内 角为90°。 24. (本题满分12分,每小题满分各4分) [解] (1) 根据两点之间距离公式,设M(a, a),由| MO |=| MA |, 解得:a=1,则M(1, ), 即AM=。 (2) ∵ A(0, 3),∴ c=3,将点M代入y=x2+bx+3,解得:b= -,即:y=x2-x+3。 (3) C(2, 2) (根据以AC、BD为对角线的菱形)。注意:A、B、C、D是按顺序的。 [解] 设B(0, m) (m<3),C(n, n2-n+3),D(n, n+3), | AB |=3-m,| DC |=yD-yC=n+3-(n2-n+3)=n-n2, | AD |==n, | AB |=| DC |Þ3-m=n-n2…j,| AB |=| AD |Þ3-m=n…k。 解j,k,得n1=0(舍去),或者n2=2,将n=2代入C(n, n2-n+3),得C(2, 2)。 25. (本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分) [解] (1) 由AE=40,BC=30,AB=50,ÞCP=24,又sinÐEMP=ÞCM=26。 (2) 在Rt△AEP與Rt△ABC中,∵ ÐEAP=ÐBAC,∴ Rt△AEP ~ Rt△ABC, ∴ ,即,∴ EP=x, 又sinÐEMP=ÞtgÐEMP==Þ=,∴ MP=x=PN, BN=AB-AP-PN=50-x-x=50-x (0查看更多
相关文章
- 当前文档收益归属上传用户