- 2022-04-09 发布 |
- 37.5 KB |
- 142页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
人教版六年级上册数学第五单元圆PPT
圆5人教版·六年级上册第1课时圆的认识 一、新课引入从奇妙的自然界,到文明的人类社会,从精巧的手工艺品到气势宏伟的各种建筑...到处都有大大小小的圆. 二、例题讲解你能想办法在纸上画一个圆吗?我用茶杯盖画。这把三角尺上正好有个圆。我是拿圆规画的,把有针尖的一只脚固定在纸上。 二、例题讲解 二、例题讲解圆心O半径r直径d用圆规画圆时,针尖所在的点叫做圆心,一般用字母O表示认识圆心认识圆的半径认识圆的直径连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示,半径的长度就是圆规两个脚之间的距离通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示 用圆规画几个不同大小的圆,剪下来,沿着直径折一折,画一画,量一量,会有什么发现?二、例题讲解 在同一个圆里,有( )条半径,它们的长度()。无数都相等二、例题讲解 二、例题讲解在同一个圆里,有( )条直径,它们的长度()。无数都相等 o•drrd=r+rd=2r在同一个圆里,直径是半径的2倍,半径是直径的一半。看图分析直径与半径的关系。二、例题讲解 从你画的圆中选两个大小不同、圆心不重合的圆。议一议,圆的位置是由什么决定的?半径决定圆的什么?O1O2所画的两个圆一个在左,一个在右,是因为画圆时针尖放置的位置不同造成的,也就是说圆的位置是由圆心决定的。二、例题讲解从视觉上看,这两个圆明显一个大一个小,是因为他们的半径不一样,可见半径决定圆的大小。 三、新知运用1.看图填空3cmΟd=6cmΟr=10cmd=ΟΟ高3.5cmr=6cm3.5cm10cm3cm 在一个圆里,()是最长的线段。0厘米2654310厘米2654310厘米2654310厘米2654310厘米2654310厘米265431直径2.对于课堂中你们用杯子盖、三角尺画出的圆,如何找到圆心?请你自己换一换,试一试。(教材P58做一做第1题)0厘米2654310厘米265431oo三、新知运用 三、新知运用3.用圆规画一个半径是2厘米的圆。并用字母o、r、d标注它的圆心,半径和直径。(教材P58做一做第2题)012346785(1)定长(半径)(2)定点(圆心)(3)一只脚旋转一周2厘米 四、课堂小结圆心O半径r直径d1.在同一个圆里,有无数条半径,它们的长度都相等。2.在同一个圆里,有无数条直径,它们的长度都相等。3.圆的位置是由圆心决定的,半径决定圆的大小。4.在一个圆里,直径是最长的线段。回顾本节课,你学会了什么?d=2r 五、课后作业完成课本“练习十三”第60页第1题、第2题、第4题、第5题。 圆5人教版·六年级上册第2课时圆的认识(二) 一、新课引入圆可以设计出许多漂亮的图案。圆为什么能设计出如此多美丽的图案,仔细观察它是一个怎样的图形呢?圆是一个轴对称图形,它有无数条对称轴。 怎样用圆规和直尺画出这个漂亮的图形呢?二、例题讲解 这位同学遇到了什么问题?怎样帮助他?先确定圆的半径和圆心二、例题讲解 ?二、例题讲解 三、新知运用1.你知道上面的图案是怎么设计出来的吗?说说你的方法。 三、新知运用2.(教材P61第7题)根据对称轴画出轴对称图形的另一半。对称轴对称轴 三、新知运用3.(教材P61第9题)如图,在长方形中有三个大小相等的圆。已知这个长方形的长是18厘米。圆的直径是多少?长方形的周长是多少?18cm圆的直径:d=18÷3=6(cm)长方形的周长:C=(18+6)×2=48(cm)答:圆的直径是6cm,长方形的周长是48cm。 四、课堂小结回顾本节课,你学会了什么?1.圆是一个轴对称图形,它有无数条对称轴;2.利用圆可以绘制很多美丽的图案。 五、课后作业完成课本“练习十三”第61页第8题、第10题。 圆1人教版·六年级上册第3课时圆的周长 一、新课引入同学们,你们有办法解决吗?圆桌和菜板都有点开裂,需要在它们的边缘箍上一圈铁皮。圆桌和菜板都有点开裂,需要在它们的边缘箍上一圈铁皮。同学们,你们有办法解决吗?分别需要多长的铁皮啊?分别需要多长的铁皮啊? 012346785A方法一:滚动AA二、例题讲解(一)测量圆周长的方法 A方法二:缠绕二、例题讲解(一)测量圆周长的方法012346785 圆的周长和圆的大小有关系,圆的大小取决于圆的半径……像这样,围成圆的曲线的长是圆的周长。除了上面的方法,还可以怎样求圆的周长呢?圆的周长和圆的大小有关系,圆的大小取决于圆的半径……二、例题讲解(二)测量圆周长的方法 二、例题讲解(二)探究圆的周长与直径的关系让我们来做一个实验:找一些圆形的物品,分别量出它们的周长和直径,并算出周长和直径的比值,把结果填入表中,看看有什么发现。 圆的周长和圆的大小有关系,圆的大小取决于圆的半径……二、例题讲解(二)探究圆的周长与直径的关系物品名称周长直径直径的比值周长(保留两位小数)圆形学具圆形纸片圆形瓶盖饭碗的碗口6cm31.5cm10cm34.5cm1.9cm10cm3.2cm11cm3.163.153.133.14原来一个圆的周长总是它的直径的3倍多一些。分别需要多长的铁皮啊?仔细观察,你发现了什么? 其实,早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率,用字母π(pài)表示。它是一个无限不循环小数,π=3.1415926535…但在实际应用中常常只取它的近似值,例如π≈3.14。二、例题讲解(三)探究圆的周长的计算公式 二、例题讲解(三)探究圆的周长的计算公式圆的周长=圆的周长总是直径的π倍。直径×圆周率 例1.这辆自行车轮子转一圈,大约可以走多远?(结果保留正米数)小明家离学校1km,骑车从家到学校,轮子大约转了多少圈?2×3.14×33=207.24(cm)≈2(m)1000÷2≈500(圈)1km=1000m答:这辆自行车轮子转一圈,大约可以走2m。小明从家到学校,轮子大约转了500圈。这辆自行车轮子的半径大约是33cm。二、例题讲解 三、新知运用1.(教材P64做一做第1题)计算下面圆的周长。C=2πr=2×3.14×3=18.84(c㎡)C=πd=3.14×6=18.84(c㎡)C=2πr=2×3.14×5=31.4(c㎡) 4.71÷3.14=1.5(m)答:这个圆桌面的直径是1.5m。2.(教材P64做一做第1题)这个圆桌面的直径是多少?我用卷尺量得圆桌面的周长是4.71m。C=πdd=C÷π三、新知运用 四、课堂小结回顾本节课,你学会了什么?1.一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率,用字母π(pài)表示,它是一个无限不循环小数,π=3.1415926535…但在实际应用中常常只取它的近似值,例如π≈3.14。C=πd或C=2πr2.如果用C表示圆的周长,就有: 五、课后作业完成课本“练习十四”第65页第1题、第3题。 圆5人教版·六年级上册第4课时练习课 1.一个圆形喷水池的半径是5m,它的周长是多少米?2×3.14×5=31.4(米)答:它的周长是31.4米。圆的周长C=2πr圆的周长知识点1一、复习巩固(教材P65第1题) 2.在一个圆形亭子里,小丽沿着直径从一端走12步到达另一端,每步长大约是55cm。这个圆的周长大约是多少米?3.14×(55×12)=2072.4(cm)2072.4cm=20.724m答:这个圆的周长大约是20.724米。求出直径就可以求出周长基础练习一、复习巩固(教材P65第2题) 3.小红量得一个古代建筑中的大红圆柱的周长是3.77m。这个圆柱的直径是多少米?(得数保留一位小数。)3.77÷3.14≈1.2(米)答:这个圆柱的直径约1.2米。C=πdd=C÷π基础练习一、复习巩固(教材P65第3题) 一、复习巩固C=πdC=2πr求周长:知道直径:知道半径:d=2r求直径:知道半径:知道周长:d=C÷πr=d÷2求半径:知道直径:知道周长:r=C÷π÷2知识总结 二、课堂练习1.一只挂钟的分针长20cm,经过30分钟后,分针的尖端所走的路程是多少厘米?经过45分钟呢?2×3.14×20×=62.8(cm)30602×3.14×20×=94.2(cm)4560答:经过30分钟后分针的尖端所走的路程是62.8cm。经过45分钟后分针的尖端所走的路程是94.2cm。分针的长度就是圆的半径。分针的尖端走30分钟就是圆周长的一半。走45分钟就是圆周长的4560(教材P65第4题) 二、课堂练习2.一个圆形牛栏的半径是15m,要用多长的粗铁丝才能把牛栏围上3圈?(接头处忽略不计。)如果每隔2m打一根木桩,大约要打多少根木桩?15×2×3.14×3=282.6(m)答:要用282.6m长的铁丝才能把牛栏围上3圈。15×2×3.14÷2≈47(根)答:大约要打47根木桩。(教材P65第5题) 二、课堂练习4.看图填空(单位:cm)。(1)(2)正方形的周长是()cm,圆的周长是()cm。其中一个圆的周长是()cm,长方形的周长是()cm。1612.569.4221r=2cmr=1.5cm(教材P66第7题) 二、课堂练习5.在一个周长为100cm的正方形纸片内,要剪一个最大的圆,这个圆的半径是多少厘米?100÷4×=12.5(厘米)12答:这个圆的半径是12.5厘米。正方形的边长就是圆的直径。(教材P66第8题) 二、课堂练习6.李明家一扇门上要装上形状如右图所示的装饰木条,需要木条多少米?50×3.14×=78.5(cm)1250×4=200(cm)200+78.5=278.5(cm)278.5cm=2.785m答:需要木条2.785m。d=50cm50cm50cm(教材P66第9题) 二、课堂练习7.下面图形的周长是多少厘米?你是怎样算的?2×3.14×5÷2+3.14×5=31.4(厘米)答:周长是31.4厘米。5cm它的周长就是一个大半圆和两个小半圆的长度。(教材P66第10题) 1.把圆柱形物体分别捆成如下图(从底面方向看)的形状,如果接头处不计,每组至少需要多长的绳子?你发现了什么?第一幅图:7×2+3.14×7=35.98(cm)第二幅图:7×4+3.14×7=49.98(cm)第三幅图:7×8+3.14×7=77.98(cm)7cm三、拓展提升(教材P66第11题) 四、课后作业完成课本“练习十四”第65页第6题。 圆5人教版·六年级上册第5课时圆的面积 1.下列图形的面积是如何计算的?aaahahabhaS=abS=a2S=ahS=ah÷2bS=(a+b)h÷2一、新课引入 长方形的长长方形的宽(原来平行四边形的底)(原来平行四边形的高)平行四边形的面积公式是怎样得到的呢?一、新课引入长方形的面积=长×宽平形四边形的面积=底×高s=ɑh 二、例题讲解 二、例题讲解能不能转化成我们学过的图形来计算呢? 二、例题讲解仔细观察:若把圆分成若干(偶数)等份,剪开后,用这些近似于等腰三角形的小纸片拼一拼,你能发现什么? 二、例题讲解将圆平均分成8份 将圆平均分成16份二、例题讲解 二、例题讲解将圆平均分成32份 将圆平均分成8等份……你发现了什么?二、例题讲解将圆平均分成32等份将圆平均分成16等份 分的分数越多,每一份就会越小,拼成的图形就会越接近于一个长方形。二、例题讲解 “近似长方形”的长与圆的周长有什么关系?二、例题讲解“近似长方形”的宽与圆的半径有什么关系? 二、例题讲解长宽(圆周长的一半)(圆的半径r)C2 长方形面积=长×宽圆面积=周长一半×半径S=×rC2=πr×r=πr2圆的面积用s表示长(圆周长的一半)C2宽(圆的半径r)S=πr2二、例题讲解 二、例题讲解例1:圆形草坪的直径是20m,每平方米草皮8元。铺满草皮需要多少钱?从题目中你知道了什么?要求铺满草坪需要多少钱,先要求出圆形草坪的面积是多少平方米。20÷2=10(m)3.14×102=314(m2)314×8=_______(元)答:铺满草皮需要_______元。25122512 三、新知运用d=10cmr=3cm1.求出下列图形的面积。(教材P671第2题)r=d÷2=10÷2=5(cm)s=πr2=3.14×52=78.5(cm2)s=πr2=3.14×32=28.26(cm2) 2.一个圆形茶几桌面的直径是1m,它的面积是多少平方米?(教材P68做一做)1÷2=0.5(m)3.14×0.5²=0.785(m²)答:它的面积是0.785m²。要先求出半径,再求圆的面积。三、新知运用 3.小刚量得一棵树干的周长是125.6厘米。这棵树干的横截面近似于圆,它的面积大约是多少?(教材P71第4题)125.6÷3.14÷2=20(cm)3.14×20²=1256(cm²)答:它的面积大约是1256cm²。根据周长可以先求出半径,再求圆的面积。三、新知运用 长方形面积=长×宽圆面积=周长一半×半径S=×rC2=πr×r=πr2圆的面积用s表示长(圆周长的一半)C2宽(圆的半径r)S=πr2圆的面积是如何推导出来的?四、课堂小结 五、课后作业完成课本“练习十五”第71页第1题、第3题。 圆5人教版·六年级上册第6课时圆环的面积 一、新课引入1.求出下列图形的面积。d=6cmr=2cmc=12.56r=d÷2=6÷2=3(cm)s=πr2=3.14×32=28.26(cm2)s=πr2=3.14×22=12.56(cm2)r=c÷π÷2=12.56÷3.14÷2=2(cm)s=πr2=3.14×22=12.56(cm2) 2.画图一、新课引入(1)用圆规画一个半径是1cm的圆,并标上圆心0;(2)圆心相同,再画一个半径是2cm的圆。0像这样的图形我们称之为圆环。 二、例题讲解生活中的圆环。 二、例题讲解例2:光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?怎样利用内圆和外圆的面积求出圆环的面积?圆环面积=外圆面积–内圆面积我是这样想的…… 二、例题讲解3.14×6²-3.14×2²=113.04-12.56=100.48(cm²)3.14×(6²-2²)=3.14×32=100.48(cm²)答:圆环的面积是100.48cm²。我是这样想的……还可以这样计算……例2:光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少? 二、例题讲解圆环面积=πR2-πr2外圆面积-内圆面积S环=S环=π(R2–r2)或如何求圆环的面积?0rR 三、新知运用50÷2=25(m)10÷2=5(m)答:草坪的占地面积是1884m²。1.一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?(教材P68做一做第2题)3.14×(25²-5²)=3.14×600=1884(m²)要求草坪的占地面积,也就是求圆环的面积。 2.图中的大圆半径等于小圆的直径,请你求出阴影部分的面积。(教材P72第6题)三、新知运用6cm阴影部分的面积=大圆面积—小圆面积大圆半径等于小圆的直径R=6cmr=6÷2=3cmS=πR2-πr2=π(R2–r2)=3.14×(62–32)=84.78(cm²)答:阴影部分的面积84.78cm²。 如何计算圆环的面积?四、课堂小结圆环面积=πR2-πr2外圆面积-内圆面积S环=S环=π(R2–r2)或0rR 五、课后作业完成课本“练习十七”第71页第7题、第8题。 圆5人教版·六年级上册第7课时解决问题 一、新课引入中国建筑和生活中经常能见到“外方内圆”和“外圆内方”的设计。 例3:下图中的两个圆半径都是1m,你能求出正方形和圆之间部分的面积吗?二、例题讲解 二、例题讲解题目中都告诉了我们什么数学信息?上图中两个圆的半径都是1m,怎样求正方形和圆之间部分的面积呢?左图求的是正方形比圆多的面积,右图求的是圆比正方形多的面积例3:下图中的两个圆半径都是1m,你能求出正方形和圆之间部分的面积吗? 二、例题讲解从图(1)可以看出:正方形的面积:2×2=4(m²)4-3.14=0.86(m²)图(1)右图中正方形的边长就是圆的直径。半径是1厘米,直径是2厘米。圆的面积:3.14×1²=3.14(m²) 二、例题讲解3.14-2=1.14(m²)从图(2)可以看出:下图中正方形的边长是多少呢?可以把图中的正方形看成两个三角形,它的底是圆的直径,高是圆的半径。图(2) 三、例题讲解左图:(2r)²-3.14×r²=0.86r²答:左图中正方形与圆之间的面积是0.86m²,右图中圆与正方形之间的面积是1.14m²。那么我们解答得对不对呢?有什么方法验证吗?如果两个圆的半径都是r,结果又是怎样的?右图:3.14×r²-(×2r×r)×2=1.14r²21当r=1m时,和前面的结果完全一致。 三、新知运用1.右图是一面我国唐代外圆内方的铜镜。铜镜的直径是24.8cm。外面的圆与内部的正方形之间的面积是多少?(教材P70做一做)答:外面的圆与内部的正方形之间的面积约是175.3cm²。1.14×(24.8÷2)²=175.2864≈175.3(cm²) 三、新知运用2.土楼是福建、广东等地区的一种建筑形式。被列入“世界物质文化名录”。土楼的外围形状有圆形、方形、椭圆形等,圭峰楼和德逊楼是福建省南靖县两座地面是圆环形的土楼。圭峰楼外直径33米,内直径14米。德逊楼外直径26.4米,内直径14.4米。两座土楼的房屋占地面积相差多少?(教材P73第12题)答:两座土楼的房屋占地面积相差316.669m²。3.14×(16.5²-7²)-3.14×(13.2²-7.2²)圭峰楼外半径:16.5米内半径:7米德逊楼外半径:13.2米内半径:7.2米=701.005-384.336=316.669(m²) 如何求“外方内圆”和“外圆内方”之间部分的面积?四、课堂小结(2r)²-3.14×r²=0.86r²3.14×r²-(×2r×r)×2=1.14r²21“外方内圆”之间部分的面积是0.86r²;“外圆内方”之间部分的面积是1.14r²。 五、课后作业完成课本“练习十五”第73页第11题、第13题。 圆5人教版·六年级上册第8课时练习课 半径直径圆面积4cm9cm6cm20cm1.完成下表。8cm3cm4.5cm40cm50.24cm²63.585cm²28.26cm²1256cm²圆的面积知识点1一、复习巩固(教材P71第1题) 2.公园草地上一个自动旋转喷灌装置的射程是10m,它能喷灌的面积是多少?S=πr2=3.14×102=3.14×100=314(m2)答:它能喷灌的面积是314m2。基础练习一、复习巩固(教材P6第3题) 一、复习巩固圆的直径与半径的关系:圆的面积计算的公式:d=2rS=πr²圆的周长计算的公式:C=2πr知识总结 .3.计算下面图形的面积。12cm8cm3.14×(122-82)=3.14×80=251.2(cm²)答:圆环的面积是251.2cm2。=3.14×(144-64)圆环的面积知识点2一、复习巩固(教材P72第7题第2小题) 4.右图是一块玉壁,外直径18cm,内直径7cm。这块玉壁的面积是少?3.14×(92-3.52)=3.14×68.75=215.875(cm²)外半径:18÷2内半径:7÷2=9(cm)=3.5(cm)答:这块玉壁的面积是215.875cm2。=3.14×(81-12.25)基础练习一、复习巩固(教材P71第5题) 一、复习巩固(1)S环=πR2-πr2(2)S环=π×(R2-r2)Rr圆环的面积计算公式:o知识总结 =S正-S圆=S圆-S正S外方内圆S外圆内方=(2r)²-3.14×r²=0.86r²=3.14×r²-(×2r×r)×2=1.14r²21一、复习巩固外方内圆和外圆内方知识点3 二、课堂练习1.右图中的铜钱直径28mm,中间的正方形边长为6mm。这个铜钱的面积是多少?3.14×142-62=615.44-36=579.44(mm²)答:这个铜钱的面积是579.44mm2。=3.14×196-36r=28÷2=14(mm)(教材P71第9题) 二、课堂练习2.计算下面图形的周长。8cm12cm大半圆弧+小半圆弧+2条线段C大半圆弧=πd÷2=3.14×12÷2=18.84(cm)C小半圆弧=πd÷2=3.14×8÷2=12.56(cm)18.84+12.56+4=35.4(cm)两条线段长度:12-8=4(cm)答:图形的周长是35.4cm。(教材P72第7题第1小题) 3.一个运动场如右图,两端是半圆形,中间是长方形。这个运动场的周长是多少米?面积是多少平方米?C=2×3.14×32+100×2=200.96+200=400.96(m)S=3.14×322+100×(32×2)=3.14×322+100×64=3215.36+6400=9615.36(m2)答:这个运动场的周长是400.96m,面积是9615.36m2。二、课堂练习100m32mO(教材P73第10题) 4.右图中的花瓣状门洞的边是由4个直径相等的半圆组成的。这个门洞的周长和面积分别是多少?=2×3.14×1=6.28(m)C=2C圆S=2S圆+S正方形=2×3.14×(1÷2)2+12=2×3.14×0.25+1=1.57+1=2.57(m2)答:这个门洞的周长是6.28m,面积是2.57m2。二、课堂练习(教材P73第11题) 5.一个圆的周长是62.8m,半径增加了2m后,面积增加了多少?C=2πrr=C÷(2π)=62.8÷(2×3.14)=62.8÷6.28=10(m)=π(r增加后2-r2)=3.14×(144-100)=3.14×44=138.16(m2)答:面积增加了138.16m2。r增加后=10+2=12(m)=3.14×(122-102)S=S增加后-S原来二、课堂练习(教材P73第13题) 6.篮球场上的3分线是由两条平你根据图中的数据计算出3分行线段和一个半圆组成的。线的长度和3分线内区域的面请积。(得数保留两位小数。)3分线的长度=2×3.14×6.75÷2+1.575×2=21.195+3.15=24.345≈24.35(m)答:3分线的长度是24.35m。二、课堂练习(教材P73第14题) S=3.14×6.752÷2+1.575×(6.75×2)=3.14×45.5625÷2+1.575×13.5=71.533125+21.2625≈92.80(m2)答:3分线内区域的面积是92.80m2。=92.7956256.篮球场上的3分线是由两条平你根据图中的数据计算出3分行线段和一个半圆组成的。线的长度和3分线内区域的面请积。(得数保留两位小数。)二、课堂练习 1.*在每个正方形中分别画一个最大的圆,并完成下表。1cm2cm3cm4cm6cm正方形的边长1cm2cm3cm4cm正方形的面积圆的面积面积之比你发现了什么?请你自己再任意设定一个正方形的边长,在正方形中画一个最大的圆,看看是否也能得出相同的结论。6cm1cm20.25πcm24:π4cm2πcm24:π9cm22.25πcm24:π16cm24πcm24:π36cm29πcm24:π面积之比都是4:π。直接用π计算,不用换成3.14计算。(教材P74第15题)三、拓展提升 2.*有一根绳子长31.4m,小红、小东和小林分别想用这根绳子在操场上围出一块地。怎样围面积最大?(1)如果围成正方形。a正方形=31.4÷4=7.85(m)S正方形=7.85×7.85=61.6225(m²)(2)如果围成圆形。r=31.4÷3.14÷2=5(m)S圆形=3.14×52=78.5(m²)(3)如果围成长方形,长和宽的差越小,面积越大,所以围成正方形的面积大于围成长方形的面积。(4)还可以围成三角形、梯形……,但无论怎样围,都不会大于围成的圆的面积。当周长一定时,圆的面积最大,因此应该用这根绳子围成一个圆。(教材P74第16题)三、拓展提升 3.*为什么草原上蒙古包的底面是圆形的。为什么绝大多数的根和茎的横截面是圆形的。请你试着从数学的角度解释一下。当周长一定时,所有图形中圆的面积最大。蒙古包的底面做成圆形,可以使居住的面积最大。绝大多数的根和茎的横截面是圆形的,可以最大面积地吸收水分。三、拓展提升(教材P74第17题) 四、课后作业完成课本“练习十五”第72页第8题。 圆5人教版·六年级上册第9课时扇形的认识 一、新课引入扇形窗扇子扇贝扇形藻这些物体的名称都含有“扇”字,那什么是扇形呢? ABO圆心角半径半径弧图上A、B两点之间的部分叫做弧,读作“弧AB”。一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。像∠AOB这样,顶点在圆心的角叫做圆心角。二、例题讲解 二、例题讲解在同一个圆中,扇形的大小与什么有关系呢?我发现在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。在同一个圆里,圆心角越大,所对应的扇形越大;圆心角越小,所对应的扇形越小。 二、例题讲解以半圆为弧的扇形的圆心角是多少度?以圆为弧的扇形呢?41360×=180(度)以半圆为弧的扇形的圆心角是180°。21360×=90(度)以圆为弧的扇形的圆心角是90°4141 三、新知运用A0BA0BA0BA0B1.下面图形中的角哪些是圆心角?在()里画“√”。(教材P76第2题)()()()()√√圆心角必须具备两个条件:1.顶点在圆心;2.角的两边是半径。 三、新知运用2.画一个半径是2cm的圆,再在圆中画一个圆心角是100度的扇形。(教材P76第3题)2cmoAB100o步骤:1.先画一个指定半径的圆。2.以圆心为顶点,以画好的半径为边画一个指定度数的角,使角的另一条边与圆相交于一点。3.标出圆心角的度数,并给扇形涂上阴影。 三、新知运用生活中见过这些图案吗? 三、新知运用像下图这样一个圆环被截得的部分叫扇环。(1)(2)3.想一想,怎样求下面扇环的面积?(教材P76第4题)2dmr=5dm01dmr=4dm0 三、新知运用3.想一想,怎样求下面扇环的面积?(教材P76第4题)2dmr=5dm0此扇环的面积就相当于是圆环面积的。41S=π(R2–r2)41=×3.14×(52–32)=12.56(dm²)由题可得外圆半径是5dm,内圆半径是3dm。41 三、新知运用3.想一想,怎样求下面扇环的面积?(教材P76第4题)1dmr=4dm0此扇环的面积就相当于是圆环面积的。21S=π(R2–r2)21=×3.14×(42–32)=10.99(dm²)由题可得外圆半径是4dm,内圆半径是3dm。21 四、课堂小结回顾本节课,你学会了什么?ABO圆心角半径半径弧在同一个圆里,圆心角越大,所对应的扇形越大;圆心角越小,所对应的扇形越小。 五、课后作业完成课本“练习十六”第76页第1题及练习册中对应课时练习。 人教版·六年级上册单元整理与复习圆5 一、学习目标1.通过操作、思考、讨论进一步理解和掌握圆的特征以及圆的周长和面积计算公式的推导过程。2.能够灵活应用圆的已有知识解决生活中的一些实际问题。3.经历知识的整理过程,体验有条理的梳理知识,形成整体认知结构的学习方法。4.培养观察、分析、归纳概括的能力,体验转化的数学思想。 二、学习重难点学习重点:1.能根据任意方向和距离确定物体的位置。2.能用语言描述简单的路线图,并能根据描述画出具体的路线示意图。学习难点:在解决问题的过程中,发展空间观念,培养合作意识,增强学好数学的兴趣和意识。 三、知识点汇总圆的认识圆的面积扇形圆的特征及各部分的名称圆圆的周长用圆规画圆圆的周长的意义圆周率圆的周长的公式与计算圆的面积的意义圆的面积计算公式的推导圆(环)的面积计算应用圆的知识解决问题扇形的意义扇形的意义扇形及扇环的面积 (1)圆中心的一点叫做(),一般用字母()表示,它可以确定圆的()。(2)连接圆心和圆上任意一点的线段叫做(),一般用字母()表示,它可以确定圆的()。(3)通过圆心并且两端都在圆上的线段叫做(),一般用字母()表示。(4)圆是()图形,有()条对称轴。圆心O半径直径无数轴对称1.填一填,我能行四、问题解决rd位置大小考点一:圆的认识 (5)周长与直径的比值是()用字母()表示,通常取近似值()。(6)用C表示圆的周长,则C=()或C=()。(7)把圆平均分成若干份,可以平成一个近似(),它的长是(),宽是(),它的面积就是(),用S表示圆的面积,则S=()。(8)圆中最长的线段是圆的()。四、问题解决圆周长的一半长方形3.14圆周率ππdπr22πr圆的半径圆的面积直径 2.一个圆形餐桌面的直径是2m。四、问题解决(1)如果一个人需要0.5m宽的位置就餐,这张餐桌大约能坐多少人?6.28÷0.5≈12(人)答:这张餐桌大约能坐12人。考点二:圆的周长的计算圆的周长C=πd=3.14×2=6.28(m) 2.一个圆形餐桌面的直径是2m。四、问题解决(2)它的面积是多少平方米?圆的面积S=πr2=3.14×12r=2÷2=1(m)=3.14(m2)答:它的面积是3.14平方米。考点三:圆的面积的计算 2.一个圆形餐桌面的直径是2m。四、问题解决(3)如果在这张餐桌的中央放一个半径是0.5m的圆形转盘,剩下的桌面面积是多少?r=2÷2=1(m)S环=π(R2–r2)=3.14×(12–0.52)=2.355(m2)答:剩下的桌面面积是2.355平方米。考点四:圆环的面积 1.请你找出下列圆的圆心和直径分别画出正方形的对角线OO五、复习提升 (1)把一个圆形纸片沿半径平均分成若干等份,拼成一个近似的长方形。则面积(),周长()。(2)周长相等的圆、正方形和长方形,()的面积最大。(3)把一个直径是10厘米的圆剪成两个半圆,则两个半圆周长的和是()厘米。不变增加圆51.42.填一填,我能行五、复习提升 (4)用圆规画一个周长12.56厘米的圆,圆规两脚之间的距离是()厘米,所画圆的面积是()平方厘米。(5)小铁环直径6分米,大铁环直径8分米。大铁环和小铁环半径的比是();周长的比是();面积的比是()。(6)在一张长60厘米,宽40厘米的长方形纸上剪一个最大的圆,则圆的面积是()平方厘米。3:43:49:161256五、复习提升212.56 3.判断对错。(1)圆周率π就是3.14(2)圆的半径扩大到原来的2倍,周长和面积也扩大到原来的2倍。(3)半径相等的两个圆周长相等。(4)两个圆的直径相等,它们的半径也一定相等。(5)用4个圆心角都是90度的扇形,一定可以拼成一个圆。()()()()()√√×××五、复习提升 4.如下图,街心公园有两块半圆形的草坪,它们的周长都是128.5m,这两块草坪的总面积是多少?128.5÷(3.14+2)=25(m)3.14×25²=1962.5(m²)答:这两块草坪的总面积是1962.5平方米。一块半圆形草坪的周长等于整个圆周长的一半与2条半径的长度之和,即πr+2r=128.5m。先根据一块半圆形草坪的周长求出圆的半径,再利用圆的面积公式求出这两块草坪的总面积,即一个整圆的面积。(教材P79第8题)六、拓展提升 六、拓展阅读 完成课本整理与复习。七、课后作业查看更多