2019年浙江省台州市中考数学试卷含答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2019年浙江省台州市中考数学试卷含答案

‎2019年浙江省台州市中考数学试卷 一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)‎ ‎1.(4分)计算2a﹣3a,结果正确的是(  )‎ A.﹣1 B.1 C.﹣a D.a ‎2.(4分)如图是某几何体的三视图,则该几何体是(  )‎ A.长方体 B.正方体 C.圆柱 D.球 ‎3.(4分)2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为(  )‎ A.5.952×1011 B.59.52×1010 C.5.952×1012 D.5952×109‎ ‎4.(4分)下列长度的三条线段,能组成三角形的是(  )‎ A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,11‎ ‎5.(4分)方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,xn,可用如下算式计算方差:s2‎=‎‎1‎n[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(xn﹣5)2],其中“5”是这组数据的(  )‎ A.最小值 B.平均数 C.中位数 D.众数 ‎6.(4分)一道来自课本的习题:‎ 从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?‎ 小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程x‎3‎‎+y‎4‎=‎‎54‎‎60‎ ‎,则另一个方程正确的是(  )‎ A.x‎4‎‎+y‎3‎=‎‎42‎‎60‎ B.x‎5‎‎+y‎4‎=‎‎42‎‎60‎ C.x‎4‎‎+y‎5‎=‎‎42‎‎60‎ D.‎x‎3‎‎+y‎4‎=‎‎42‎‎60‎ ‎7.(4分)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为(  )‎ A.2‎3‎ B.3 C.4 D.4‎‎-‎‎3‎ ‎8.(4分)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于(  )‎ A.‎1‎‎4‎ B.‎1‎‎2‎ C.‎8‎‎17‎ D.‎‎8‎‎15‎ ‎9.(4分)已知某函数的图象C与函数y‎=‎‎3‎x的图象关于直线y=2对称.下列命题:①图象C与函数y‎=‎‎3‎x的图象交于点(‎3‎‎2‎,2);②点(‎1‎‎2‎,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是(  )‎ A.①② B.①③④ C.②③④ D.①②③④‎ ‎10.(4分)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为(  )‎ A.‎2‎:1 B.3:2 C.‎3‎:1 D.‎2‎:2‎ 二、填空题(本题有6小题,每小题5分,共30分)‎ ‎11.(5分)分解因式:ax2﹣ay2=   .‎ ‎12.(5分)若一个数的平方等于5,则这个数等于   .‎ ‎13.(5分)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是   .‎ ‎14.(5分)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为   .‎ ‎15.(5分)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共   个.‎ ‎16.(5分)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且mn‎=‎‎2‎‎3‎,则m+n的最大值为   .‎ 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)‎ ‎17.(8分)计算:‎12‎‎+‎|1‎-‎‎3‎|﹣(﹣1).‎ ‎18.(8分)先化简,再求值:‎3xx‎2‎‎-2x+1‎‎-‎‎3‎x‎2‎‎-2x+1‎,其中x‎=‎‎1‎‎2‎.‎ ‎19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).‎ ‎20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h‎=-‎‎3‎‎10‎x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.‎ ‎(1)求y关于x的函数解析式;‎ ‎(2)请通过计算说明甲、乙两人谁先到达一楼地面.‎ ‎21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.‎ ‎(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?‎ ‎(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;‎ ‎(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY ‎22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.‎ ‎(1)已知凸五边形ABCDE的各条边都相等.‎ ‎①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;‎ ‎②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:‎ ‎(2)判断下列命题的真假.(在括号内填写“真”或“假”)‎ 如图3,已知凸六边形ABCDEF的各条边都相等.‎ ‎①若AC=CE=EA,则六边形ABCDEF是正六边形;(   )‎ ‎②若AD=BE=CF,则六边形ABCDEF是正六边形. (   )‎ ‎23.(12分)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).‎ ‎(1)求b,c满足的关系式;‎ ‎(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;‎ ‎(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.‎ ‎24.(14分)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.‎ ‎(1)求AFAP的值;‎ ‎(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;‎ ‎(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.‎ ‎2019年浙江省台州市中考数学试卷 参考答案与试题解析 一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)‎ ‎1.(4分)计算2a﹣3a,结果正确的是(  )‎ A.﹣1 B.1 C.﹣a D.a ‎【解答】解:2a﹣3a=﹣a,‎ 故选:C.‎ ‎2.(4分)如图是某几何体的三视图,则该几何体是(  )‎ A.长方体 B.正方体 C.圆柱 D.球 ‎【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,‎ 故该几何体是一个柱体,‎ 又∵俯视图是一个圆,‎ 故该几何体是一个圆柱,‎ 故选:C.‎ ‎3.(4分)2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为(  )‎ A.5.952×1011 B.59.52×1010 C.5.952×1012 D.5952×109‎ ‎【解答】解:数字595200000000科学记数法可表示为5.952×1011元.‎ 故选:A.‎ ‎4.(4分)下列长度的三条线段,能组成三角形的是(  )‎ A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,11‎ ‎【解答】解:‎ A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形 B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形 C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形 D选项,5+6=11,两边之和不大于第三边,故不能组成三角形 故选:B.‎ ‎5.(4分)方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,xn,可用如下算式计算方差:s2‎=‎‎1‎n[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(xn﹣5)2],其中“5”是这组数据的(  )‎ A.最小值 B.平均数 C.中位数 D.众数 ‎【解答】解:方差s2‎=‎‎1‎n[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(xn﹣5)2]中“5”是这组数据的平均数,‎ 故选:B.‎ ‎6.(4分)一道来自课本的习题:‎ 从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?‎ 小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程x‎3‎‎+y‎4‎=‎‎54‎‎60‎,则另一个方程正确的是(  )‎ A.x‎4‎‎+y‎3‎=‎‎42‎‎60‎ B.x‎5‎‎+y‎4‎=‎‎42‎‎60‎ C.x‎4‎‎+y‎5‎=‎‎42‎‎60‎ D.‎x‎3‎‎+y‎4‎=‎‎42‎‎60‎ ‎【解答】解:设未知数x,y,已经列出一个方程x‎3‎‎+y‎4‎=‎‎54‎‎60‎,则另一个方程正确的是:x‎5‎‎+y‎4‎=‎‎42‎‎60‎.‎ 故选:B.‎ ‎7.(4分)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为(  )‎ A.2‎3‎ B.3 C.4 D.4‎‎-‎‎3‎ ‎【解答】解:设⊙O与AC的切点为E,‎ 连接AO,OE,‎ ‎∵等边三角形ABC的边长为8,‎ ‎∴AC=8,∠C=∠BAC=60°,‎ ‎∵圆分别与边AB,AC相切,‎ ‎∴∠BAO=∠CAO‎=‎1‎‎2‎∠‎BAC=30°,‎ ‎∴∠AOC=90°,‎ ‎∴OC‎=‎‎1‎‎2‎AC=4,‎ ‎∵OE⊥AC,‎ ‎∴OE‎=‎‎3‎‎2‎OC=2‎3‎,‎ ‎∴⊙O的半径为2‎3‎,‎ 故选:A.‎ ‎8.(4分)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于(  )‎ A.‎1‎‎4‎ B.‎1‎‎2‎ C.‎8‎‎17‎ D.‎‎8‎‎15‎ ‎【解答】解:如图,‎ ‎∵∠ADC=∠HDF=90°‎ ‎∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°‎ ‎∴△CDM≌△HDN(ASA)‎ ‎∴MD=ND,且四边形DNKM是平行四边形 ‎∴四边形DNKM是菱形 ‎∴KM=DM ‎∵sinα=sin∠DMC‎=‎CDMD ‎∴当点B与点E重合时,两张纸片交叉所成的角a最小,‎ 设MD=a=BM,则CM=8﹣a,‎ ‎∵MD2=CD2+MC2,‎ ‎∴a2=4+(8﹣a)2,‎ ‎∴a‎=‎‎17‎‎4‎ ‎∴CM‎=‎‎15‎‎4‎ ‎∴tanα=tan∠DMC‎=CDMC=‎‎8‎‎15‎ 故选:D.‎ ‎9.(4分)已知某函数的图象C与函数y‎=‎‎3‎x的图象关于直线y=2对称.下列命题:①图象C与函数y‎=‎‎3‎x的图象交于点(‎3‎‎2‎,2);②点(‎1‎‎2‎,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是(  )‎ A.①② B.①③④ C.②③④ D.①②③④‎ ‎【解答】解:∵函数y‎=‎‎3‎x的图象在第一、三象限,‎ 则关于直线y=2对称,点(‎3‎‎2‎,2)是图象C与函数y‎=‎‎3‎x的图象交于点;‎ ‎∴①正确;‎ 点(‎1‎‎2‎,﹣2)关于y=2对称的点为点(‎1‎‎2‎,6),‎ ‎∵(‎1‎‎2‎,6)在函数y‎=‎‎3‎x上,‎ ‎∴点(‎1‎‎2‎,﹣2)在图象C上;‎ ‎∴②正确;‎ ‎∵y‎=‎‎3‎x中y≠0,x≠0,‎ 取y‎=‎‎3‎x上任意一点为(x,y),‎ 则点(x,y)与y=2对称点的纵坐标为4‎-‎‎3‎x;‎ ‎∴③错误;‎ A(x1,y1),B(x2,y2)关于y=2对称点为(x1,4﹣y1),B(x2,4﹣y2)在函数y‎=‎‎3‎x上,‎ ‎∴4﹣y1‎=‎‎3‎x‎1‎,4﹣y2‎=‎‎3‎x‎2‎,‎ ‎∵x1>x2>0或0>x1>x2,‎ ‎∴4﹣y1<4﹣y2,‎ ‎∴y1>y2;‎ ‎∴④不正确;‎ 故选:A.‎ ‎10.(4分)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为(  )‎ A.‎2‎:1 B.3:2 C.‎3‎:1 D.‎2‎:2‎ ‎【解答】解:如图,作DC⊥EF于C,DK⊥FH于K,连接DF.‎ 由题意:四边形DCFK是正方形,∠CDM=∠MDF=∠FDN=∠NDK,‎ ‎∴∠CDK=∠DKF=90°,DK=FK,DF‎=‎‎2‎DK,‎ ‎∴S‎△DFNS‎△DNK‎=FNNK=DFDK=‎‎2‎(角平分线的性质定理,可以用面积法证明),‎ ‎∴SA型SB型‎=‎2S‎△DFN‎2S‎△DNK=‎‎2‎,‎ ‎∴图案中A型瓷砖的总面积与B型瓷砖的总面积之比为‎2‎:1,‎ 故选:A.‎ 二、填空题(本题有6小题,每小题5分,共30分)‎ ‎11.(5分)分解因式:ax2﹣ay2= a(x+y)(x﹣y) .‎ ‎【解答】解:ax2﹣ay2,‎ ‎=a(x2﹣y2),‎ ‎=a(x+y)(x﹣y).‎ 故答案为:a(x+y)(x﹣y).‎ ‎12.(5分)若一个数的平方等于5,则这个数等于 ±‎5‎ .‎ ‎【解答】解:若一个数的平方等于5,则这个数等于:±‎5‎.‎ 故答案为:±‎5‎.‎ ‎13.(5分)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是 ‎4‎‎9‎ .‎ ‎【解答】解:画树状图如图所示:‎ 一共有9种等可能的情况,两次摸出的小球颜色不同的有4种,‎ ‎∴两次摸出的小球颜色不同的概率为‎4‎‎9‎;‎ 故答案为:‎4‎‎9‎.‎ ‎14.(5分)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为 52° .‎ ‎【解答】解:∵圆内接四边形ABCD,‎ ‎∴∠D=180°﹣∠ABC=116°,‎ ‎∵点D关于AC的对称点E在边BC上,‎ ‎∴∠D=∠AEC=116°,‎ ‎∴∠BAE=116°﹣64°=52°.‎ 故答案为:52°.‎ ‎15.(5分)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共 3 个.‎ ‎【解答】解:∵210÷3=70,‎ ‎∴第一次砸碎3的倍数的金蛋个数为70个,剩下210﹣70=140个金蛋,重新编号为1,2,3,…,140;‎ ‎∵140÷3=46…2,‎ ‎∴第二次砸碎3的倍数的金蛋个数为46个,剩下140﹣46=94个金蛋,重新编号为1,2,3,…,94;‎ ‎∵94÷3=31…1,‎ ‎∴第三次砸碎3的倍数的金蛋个数为31个,剩下94﹣31=63个金蛋,‎ ‎∵63<66,‎ ‎∴砸三次后,就不再存在编号为66的金蛋,故操作过程中砸碎编号是“66”的“金蛋”共有3个.‎ 故答案为:3.‎ ‎16.(5分)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且mn‎=‎‎2‎‎3‎,则m+n的最大值为 ‎25‎‎3‎ .‎ ‎【解答】解:过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,‎ 设AE=x,CF=y,BN=x,BM=y,‎ ‎∵BD=4,‎ ‎∴DM=y﹣4,DN=4﹣x,‎ ‎∵∠ABC=∠AEB=∠BFC=∠CMD=∠AND=90°,‎ ‎∴∠EAB+∠ABE=∠ABE+∠CBF=90°,‎ ‎∴∠EAB=∠CBF,‎ ‎∴△ABE∽△BFC,‎ ‎∴AEBF‎=‎BECF,即xn‎=‎my,‎ ‎∴xy=mn,‎ ‎∵∠ADN=∠CDM,‎ ‎∴△CMD∽△AND,‎ ‎∴ANCM‎=‎DNDM,即mn‎=‎4-xy-4‎=‎‎2‎‎3‎,‎ ‎∴y‎=-‎‎3‎‎2‎x+10,‎ ‎∵mn‎=‎‎2‎‎3‎,‎ ‎∴n‎=‎‎3‎‎2‎m,‎ ‎∴(m+n)最大‎=‎‎5‎‎2‎m,‎ ‎∴当m最大时,(m+n)最大‎=‎‎5‎‎2‎m,‎ ‎∵mn=xy=x(‎-‎‎3‎‎2‎x+10)‎=-‎‎3‎‎2‎x2+10x‎=‎‎3‎‎2‎m2,‎ ‎∴当x‎=-‎10‎‎2×(-‎3‎‎2‎)‎=‎‎10‎‎3‎时,mn最大‎=‎50‎‎3‎=‎‎3‎‎2‎m2,‎ ‎∴m最大‎=‎‎10‎‎3‎,‎ ‎∴m+n的最大值为‎5‎‎2‎‎×‎10‎‎3‎=‎‎25‎‎3‎.‎ 故答案为:‎25‎‎3‎.‎ 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)‎ ‎17.(8分)计算:‎12‎‎+‎|1‎-‎‎3‎|﹣(﹣1).‎ ‎【解答】解:原式‎=2‎3‎+‎3‎-1+1=3‎‎3‎.‎ ‎18.(8分)先化简,再求值:‎3xx‎2‎‎-2x+1‎‎-‎‎3‎x‎2‎‎-2x+1‎,其中x‎=‎‎1‎‎2‎.‎ ‎【解答】解:‎‎3xx‎2‎‎-2x+1‎‎-‎‎3‎x‎2‎‎-2x+1‎ ‎=‎‎3(x-1)‎‎(x-1‎‎)‎‎2‎‎ ‎ ‎=‎‎3‎x-1‎‎,‎ 当x‎=‎‎1‎‎2‎时,原式‎=‎3‎‎1‎‎2‎‎-1‎=-‎6.‎ ‎19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).‎ ‎【解答】解:过点A作AD⊥BC于点D,延长AD交地面于点E,‎ ‎∵sin∠ABD‎=‎ADAB,‎ ‎∴AD=92×0.94≈86.48,‎ ‎∵DE=6,‎ ‎∴AE=AD+DE=92.5,‎ ‎∴把手A离地面的高度为92.5cm.‎ ‎20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h‎=-‎‎3‎‎10‎x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.‎ ‎(1)求y关于x的函数解析式;‎ ‎(2)请通过计算说明甲、乙两人谁先到达一楼地面.‎ ‎【解答】解:(1)设y关于x的函数解析式是y=kx+b,‎ b=6‎‎15k+b=3‎‎,解得,k=-‎‎1‎‎5‎b=6‎,‎ 即y关于x的函数解析式是y‎=-‎‎1‎‎5‎x+6;‎ ‎(2)当h=0时,0‎=-‎‎3‎‎10‎x+6,得x=20,‎ 当y=0时,0‎=-‎‎1‎‎5‎x+6,得x=30,‎ ‎∵20<30,‎ ‎∴甲先到达地面.‎ ‎21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.‎ ‎(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?‎ ‎(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;‎ ‎(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY ‎【解答】解:(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,‎ 占抽取人数:‎510‎‎1000‎‎×100%=51%‎;‎ 答:宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51%,‎ ‎(2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万‎×‎177‎‎1000‎=‎5.31万(人),‎ 答:估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人;‎ ‎(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:‎178‎‎896+702+224+178‎‎×100%=‎8.9%,‎ 活动前全市骑电瓶车“都不戴”安全帽的百分比:‎177‎‎1000‎‎×100%=17.7%‎,‎ ‎8.9%<17.7%,‎ 因此交警部门开展的宣传活动有效果.‎ ‎22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.‎ ‎(1)已知凸五边形ABCDE的各条边都相等.‎ ‎①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;‎ ‎②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:‎ ‎(2)判断下列命题的真假.(在括号内填写“真”或“假”)‎ 如图3,已知凸六边形ABCDEF的各条边都相等.‎ ‎①若AC=CE=EA,则六边形ABCDEF是正六边形;( 假 )‎ ‎②若AD=BE=CF,则六边形ABCDEF是正六边形. ( 假 )‎ ‎【解答】(1)①证明:∵凸五边形ABCDE的各条边都相等,‎ ‎∴AB=BC=CD=DE=EA,‎ 在△ABC、△BCD、△CDE、△DEA、EAB中,AB=BC=CD=DE=EABC=CD=DE=EA=ABAC=BD=CE=DA=BE,‎ ‎∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),‎ ‎∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,‎ ‎∴五边形ABCDE是正五边形;‎ ‎②解:若AC=BE=CE,五边形ABCDE是正五边形,理由如下:‎ 在△ABE、△BCA和△DEC中,AE=BA=DCAB=BC=DEBE=AC=CE,‎ ‎∴△ABE≌△BCA≌△DEC(SSS),‎ ‎∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,‎ 在△ACE和△BEC中,AE=BCCE=BEAC=CE,‎ ‎∴△ACE≌△BEC(SSS),‎ ‎∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,‎ ‎∵四边形ABCE内角和为360°,‎ ‎∴∠ABC+∠ECB=180°,‎ ‎∴AB∥CE,‎ ‎∴∠ABE=∠BEC,∠BAC=∠ACE,‎ ‎∴∠CAE=∠CEA=2∠ABE,‎ ‎∴∠BAE=3∠ABE,‎ 同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,‎ ‎∴五边形ABCDE是正五边形;‎ ‎(2)解:①若AC=CE=EA,如图3所示:‎ 则六边形ABCDEF是正六边形;假命题;理由如下:‎ ‎∵凸六边形ABCDEF的各条边都相等,‎ ‎∴AB=BC=CD=DE=EF=FA,‎ 在△AEF、△CAB和△ECD中,EF=AB=CDAF=CB=EDAE=CA=EC,‎ ‎∴△AEF≌△CAB≌△ECD(SSS),‎ 如果△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,‎ 而正六边形的各个内角都为120°,‎ ‎∴六边形ABCDEF不是正六边形;‎ 故答案为:假;‎ ‎②若AD=BE=CF,则六边形ABCDEF是正六边形;假命题;理由如下:‎ 如图4所示:连接AE、AC、CE、BF,‎ 在△BFE和△FBC中,EF=CBBE=FCBF=FB,‎ ‎∴△BFE≌△FBC(SSS),‎ ‎∴∠BFE=∠FBC,‎ ‎∵AB=AF,‎ ‎∴∠AFB=∠ABF,‎ ‎∴∠AFE=∠ABC,‎ 在△FAE和△BCA中,AF=CB‎∠AFE=∠CBAEF=AB,‎ ‎∴△FAE≌△BCA(SAS),‎ ‎∴AE=CA,‎ 同理:AE=CE,‎ ‎∴AE=CA=CE,‎ 由①得:△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,‎ 而正六边形的各个内角都为120°,‎ ‎∴六边形ABCDEF不是正六边形;‎ 故答案为:假.‎ ‎23.(12分)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).‎ ‎(1)求b,c满足的关系式;‎ ‎(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;‎ ‎(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.‎ ‎【解答】解:(1)将点(﹣2,4)代入y=x2+bx+c,‎ 得﹣2b+c=0,‎ ‎∴c=2b;‎ ‎(2)m‎=-‎b‎2‎,n‎=‎‎4c-‎b‎2‎‎4‎,‎ ‎∴n‎=‎‎8b-‎b‎2‎‎4‎,‎ ‎∴n=2b﹣m2,‎ ‎(3)y=x2+bx+2b=(x‎+‎b‎2‎)2‎-b‎2‎‎4‎+‎2b,‎ 对称轴x‎=-‎b‎2‎,‎ 当b≤0时,c≤0,函数不经过第三象限,则c=0;‎ 此时y=x2,当﹣5≤x≤1时,函数最小值是0,最大值是25,‎ ‎∴最大值与最小值之差为25;(舍去)‎ 当b>0时,c>0,函数不经过第三象限,则△≤0,‎ ‎∴0≤b≤8,‎ ‎∴﹣4≤x‎=-b‎2‎≤‎0,‎ 当﹣5≤x≤1时,函数有最小值‎-b‎2‎‎4‎+‎2b,‎ 当﹣5‎≤-b‎2‎<-‎2时,函数有最大值1+3b,‎ 当﹣2‎<-b‎2‎≤‎1时,函数有最大值25﹣3b;‎ 函数的最大值与最小值之差为16,‎ 当最大值1+3b时,1+3b‎+b‎2‎‎4‎-‎2b=16,‎ ‎∴b=6或b=﹣10,‎ ‎∵4≤b≤8,‎ ‎∴b=6;‎ 当最大值25﹣3b时,25﹣3b‎+b‎2‎‎4‎-‎2b=16,‎ ‎∴b=2或b=18,‎ ‎∵2≤b≤4,‎ ‎∴b=2;‎ 综上所述b=2或b=6;‎ ‎24.(14分)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.‎ ‎(1)求AFAP的值;‎ ‎(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;‎ ‎(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.‎ ‎【解答】解:(1)设AP=FD=a,‎ ‎∴AF=2﹣a,‎ ‎∵四边形ABCD是正方形 ‎∴AB∥CD ‎∴△AFP∽△DFC ‎∴‎APCD‎=‎AFFD 即a‎2‎‎=‎‎2-aa ‎∴a‎=‎5‎-‎1‎ ‎∴AP=FD‎=‎5‎-‎1,‎ ‎∴AF=AD﹣DF=3‎‎-‎‎5‎ ‎∴‎AFAP‎=‎‎5‎‎-1‎‎2‎ ‎(2)在CD上截取DH=AF ‎∵AF=DH,∠PAF=∠D=90°,AP=FD,‎ ‎∴△PAF≌△HDF(SAS)‎ ‎∴PF=FH,‎ ‎∵AD=CD,AF=DH ‎∴FD=CH=AP‎=‎5‎-‎1‎ ‎∵点E是AB中点,‎ ‎∴BE=AE=1=EM ‎∴PE=PA+AE‎=‎‎5‎ ‎∵EC2=BE2+BC2=1+4=5,‎ ‎∴EC‎=‎‎5‎ ‎∴EC=PE,CM‎=‎5‎-‎1‎ ‎∴∠P=∠ECP ‎∵AP∥CD ‎∴∠P=∠PCD ‎∴∠ECP=∠PCD,且CM=CH‎=‎5‎-‎1,CF=CF ‎∴△FCM≌△FCH(SAS)‎ ‎∴FM=FH ‎∴FM=PF ‎(3)若点B'在BN上,如图,以A原点,AB为y轴,AD为x轴建立平面直角坐标系,‎ ‎∵EN⊥AB,AE=BE ‎∴AQ=BQ=AP‎=‎5‎-‎1‎ 由旋转的性质可得AQ=AQ'‎=‎5‎-‎1,AB=AB'=2,Q'B'=QB‎=‎5‎-‎1,‎ ‎∵点B(0,﹣2),点N(2,﹣1)‎ ‎∴直线BN解析式为:y‎=‎‎1‎‎2‎x﹣2‎ 设点B'(x,‎1‎‎2‎x﹣2)‎ ‎∴AB'‎=x‎2‎+(‎1‎‎2‎x-2)‎‎2‎=‎2‎ ‎∴x‎=‎‎8‎‎5‎ ‎∴点B'(‎8‎‎5‎,‎-‎‎6‎‎5‎)‎ ‎∵点Q'(‎5‎‎-‎1,0)‎ ‎∴B'Q'‎=‎(‎5‎-1-‎8‎‎5‎)‎2‎+‎‎36‎‎25‎≠‎5‎-‎1‎ ‎∴点B旋转后的对应点B'不落在线段BN上.‎ 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2019/6/30 10:00:28;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521‎
查看更多

相关文章

您可能关注的文档