- 2021-11-10 发布 |
- 37.5 KB |
- 30页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019年浙江省台州市中考数学试卷含答案
2019年浙江省台州市中考数学试卷 一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分) 1.(4分)计算2a﹣3a,结果正确的是( ) A.﹣1 B.1 C.﹣a D.a 2.(4分)如图是某几何体的三视图,则该几何体是( ) A.长方体 B.正方体 C.圆柱 D.球 3.(4分)2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为( ) A.5.952×1011 B.59.52×1010 C.5.952×1012 D.5952×109 4.(4分)下列长度的三条线段,能组成三角形的是( ) A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,11 5.(4分)方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,xn,可用如下算式计算方差:s2=1n[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(xn﹣5)2],其中“5”是这组数据的( ) A.最小值 B.平均数 C.中位数 D.众数 6.(4分)一道来自课本的习题: 从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少? 小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程x3+y4=5460 ,则另一个方程正确的是( ) A.x4+y3=4260 B.x5+y4=4260 C.x4+y5=4260 D.x3+y4=4260 7.(4分)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为( ) A.23 B.3 C.4 D.4-3 8.(4分)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于( ) A.14 B.12 C.817 D.815 9.(4分)已知某函数的图象C与函数y=3x的图象关于直线y=2对称.下列命题:①图象C与函数y=3x的图象交于点(32,2);②点(12,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是( ) A.①② B.①③④ C.②③④ D.①②③④ 10.(4分)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为( ) A.2:1 B.3:2 C.3:1 D.2:2 二、填空题(本题有6小题,每小题5分,共30分) 11.(5分)分解因式:ax2﹣ay2= . 12.(5分)若一个数的平方等于5,则这个数等于 . 13.(5分)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是 . 14.(5分)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为 . 15.(5分)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共 个. 16.(5分)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且mn=23,则m+n的最大值为 . 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分) 17.(8分)计算:12+|1-3|﹣(﹣1). 18.(8分)先化简,再求值:3xx2-2x+1-3x2-2x+1,其中x=12. 19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75). 20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=-310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示. (1)求y关于x的函数解析式; (2)请通过计算说明甲、乙两人谁先到达一楼地面. 21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表. (1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几? (2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数; (3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY 22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形. (1)已知凸五边形ABCDE的各条边都相等. ①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形; ②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由: (2)判断下列命题的真假.(在括号内填写“真”或“假”) 如图3,已知凸六边形ABCDEF的各条边都相等. ①若AC=CE=EA,则六边形ABCDEF是正六边形;( ) ②若AD=BE=CF,则六边形ABCDEF是正六边形. ( ) 23.(12分)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4). (1)求b,c满足的关系式; (2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式; (3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值. 24.(14分)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD. (1)求AFAP的值; (2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF; (3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由. 2019年浙江省台州市中考数学试卷 参考答案与试题解析 一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分) 1.(4分)计算2a﹣3a,结果正确的是( ) A.﹣1 B.1 C.﹣a D.a 【解答】解:2a﹣3a=﹣a, 故选:C. 2.(4分)如图是某几何体的三视图,则该几何体是( ) A.长方体 B.正方体 C.圆柱 D.球 【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形, 故该几何体是一个柱体, 又∵俯视图是一个圆, 故该几何体是一个圆柱, 故选:C. 3.(4分)2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为( ) A.5.952×1011 B.59.52×1010 C.5.952×1012 D.5952×109 【解答】解:数字595200000000科学记数法可表示为5.952×1011元. 故选:A. 4.(4分)下列长度的三条线段,能组成三角形的是( ) A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,11 【解答】解: A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形 B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形 C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形 D选项,5+6=11,两边之和不大于第三边,故不能组成三角形 故选:B. 5.(4分)方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,xn,可用如下算式计算方差:s2=1n[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(xn﹣5)2],其中“5”是这组数据的( ) A.最小值 B.平均数 C.中位数 D.众数 【解答】解:方差s2=1n[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(xn﹣5)2]中“5”是这组数据的平均数, 故选:B. 6.(4分)一道来自课本的习题: 从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少? 小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程x3+y4=5460,则另一个方程正确的是( ) A.x4+y3=4260 B.x5+y4=4260 C.x4+y5=4260 D.x3+y4=4260 【解答】解:设未知数x,y,已经列出一个方程x3+y4=5460,则另一个方程正确的是:x5+y4=4260. 故选:B. 7.(4分)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为( ) A.23 B.3 C.4 D.4-3 【解答】解:设⊙O与AC的切点为E, 连接AO,OE, ∵等边三角形ABC的边长为8, ∴AC=8,∠C=∠BAC=60°, ∵圆分别与边AB,AC相切, ∴∠BAO=∠CAO=12∠BAC=30°, ∴∠AOC=90°, ∴OC=12AC=4, ∵OE⊥AC, ∴OE=32OC=23, ∴⊙O的半径为23, 故选:A. 8.(4分)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于( ) A.14 B.12 C.817 D.815 【解答】解:如图, ∵∠ADC=∠HDF=90° ∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90° ∴△CDM≌△HDN(ASA) ∴MD=ND,且四边形DNKM是平行四边形 ∴四边形DNKM是菱形 ∴KM=DM ∵sinα=sin∠DMC=CDMD ∴当点B与点E重合时,两张纸片交叉所成的角a最小, 设MD=a=BM,则CM=8﹣a, ∵MD2=CD2+MC2, ∴a2=4+(8﹣a)2, ∴a=174 ∴CM=154 ∴tanα=tan∠DMC=CDMC=815 故选:D. 9.(4分)已知某函数的图象C与函数y=3x的图象关于直线y=2对称.下列命题:①图象C与函数y=3x的图象交于点(32,2);②点(12,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是( ) A.①② B.①③④ C.②③④ D.①②③④ 【解答】解:∵函数y=3x的图象在第一、三象限, 则关于直线y=2对称,点(32,2)是图象C与函数y=3x的图象交于点; ∴①正确; 点(12,﹣2)关于y=2对称的点为点(12,6), ∵(12,6)在函数y=3x上, ∴点(12,﹣2)在图象C上; ∴②正确; ∵y=3x中y≠0,x≠0, 取y=3x上任意一点为(x,y), 则点(x,y)与y=2对称点的纵坐标为4-3x; ∴③错误; A(x1,y1),B(x2,y2)关于y=2对称点为(x1,4﹣y1),B(x2,4﹣y2)在函数y=3x上, ∴4﹣y1=3x1,4﹣y2=3x2, ∵x1>x2>0或0>x1>x2, ∴4﹣y1<4﹣y2, ∴y1>y2; ∴④不正确; 故选:A. 10.(4分)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为( ) A.2:1 B.3:2 C.3:1 D.2:2 【解答】解:如图,作DC⊥EF于C,DK⊥FH于K,连接DF. 由题意:四边形DCFK是正方形,∠CDM=∠MDF=∠FDN=∠NDK, ∴∠CDK=∠DKF=90°,DK=FK,DF=2DK, ∴S△DFNS△DNK=FNNK=DFDK=2(角平分线的性质定理,可以用面积法证明), ∴SA型SB型=2S△DFN2S△DNK=2, ∴图案中A型瓷砖的总面积与B型瓷砖的总面积之比为2:1, 故选:A. 二、填空题(本题有6小题,每小题5分,共30分) 11.(5分)分解因式:ax2﹣ay2= a(x+y)(x﹣y) . 【解答】解:ax2﹣ay2, =a(x2﹣y2), =a(x+y)(x﹣y). 故答案为:a(x+y)(x﹣y). 12.(5分)若一个数的平方等于5,则这个数等于 ±5 . 【解答】解:若一个数的平方等于5,则这个数等于:±5. 故答案为:±5. 13.(5分)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是 49 . 【解答】解:画树状图如图所示: 一共有9种等可能的情况,两次摸出的小球颜色不同的有4种, ∴两次摸出的小球颜色不同的概率为49; 故答案为:49. 14.(5分)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为 52° . 【解答】解:∵圆内接四边形ABCD, ∴∠D=180°﹣∠ABC=116°, ∵点D关于AC的对称点E在边BC上, ∴∠D=∠AEC=116°, ∴∠BAE=116°﹣64°=52°. 故答案为:52°. 15.(5分)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共 3 个. 【解答】解:∵210÷3=70, ∴第一次砸碎3的倍数的金蛋个数为70个,剩下210﹣70=140个金蛋,重新编号为1,2,3,…,140; ∵140÷3=46…2, ∴第二次砸碎3的倍数的金蛋个数为46个,剩下140﹣46=94个金蛋,重新编号为1,2,3,…,94; ∵94÷3=31…1, ∴第三次砸碎3的倍数的金蛋个数为31个,剩下94﹣31=63个金蛋, ∵63<66, ∴砸三次后,就不再存在编号为66的金蛋,故操作过程中砸碎编号是“66”的“金蛋”共有3个. 故答案为:3. 16.(5分)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且mn=23,则m+n的最大值为 253 . 【解答】解:过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M, 设AE=x,CF=y,BN=x,BM=y, ∵BD=4, ∴DM=y﹣4,DN=4﹣x, ∵∠ABC=∠AEB=∠BFC=∠CMD=∠AND=90°, ∴∠EAB+∠ABE=∠ABE+∠CBF=90°, ∴∠EAB=∠CBF, ∴△ABE∽△BFC, ∴AEBF=BECF,即xn=my, ∴xy=mn, ∵∠ADN=∠CDM, ∴△CMD∽△AND, ∴ANCM=DNDM,即mn=4-xy-4=23, ∴y=-32x+10, ∵mn=23, ∴n=32m, ∴(m+n)最大=52m, ∴当m最大时,(m+n)最大=52m, ∵mn=xy=x(-32x+10)=-32x2+10x=32m2, ∴当x=-102×(-32)=103时,mn最大=503=32m2, ∴m最大=103, ∴m+n的最大值为52×103=253. 故答案为:253. 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分) 17.(8分)计算:12+|1-3|﹣(﹣1). 【解答】解:原式=23+3-1+1=33. 18.(8分)先化简,再求值:3xx2-2x+1-3x2-2x+1,其中x=12. 【解答】解:3xx2-2x+1-3x2-2x+1 =3(x-1)(x-1)2 =3x-1, 当x=12时,原式=312-1=-6. 19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75). 【解答】解:过点A作AD⊥BC于点D,延长AD交地面于点E, ∵sin∠ABD=ADAB, ∴AD=92×0.94≈86.48, ∵DE=6, ∴AE=AD+DE=92.5, ∴把手A离地面的高度为92.5cm. 20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=-310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示. (1)求y关于x的函数解析式; (2)请通过计算说明甲、乙两人谁先到达一楼地面. 【解答】解:(1)设y关于x的函数解析式是y=kx+b, b=615k+b=3,解得,k=-15b=6, 即y关于x的函数解析式是y=-15x+6; (2)当h=0时,0=-310x+6,得x=20, 当y=0时,0=-15x+6,得x=30, ∵20<30, ∴甲先到达地面. 21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表. (1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几? (2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数; (3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY 【解答】解:(1)宣传活动前,在抽取的市民中偶尔戴的人数最多, 占抽取人数:5101000×100%=51%; 答:宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51%, (2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×1771000=5.31万(人), 答:估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人; (3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:178896+702+224+178×100%=8.9%, 活动前全市骑电瓶车“都不戴”安全帽的百分比:1771000×100%=17.7%, 8.9%<17.7%, 因此交警部门开展的宣传活动有效果. 22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形. (1)已知凸五边形ABCDE的各条边都相等. ①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形; ②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由: (2)判断下列命题的真假.(在括号内填写“真”或“假”) 如图3,已知凸六边形ABCDEF的各条边都相等. ①若AC=CE=EA,则六边形ABCDEF是正六边形;( 假 ) ②若AD=BE=CF,则六边形ABCDEF是正六边形. ( 假 ) 【解答】(1)①证明:∵凸五边形ABCDE的各条边都相等, ∴AB=BC=CD=DE=EA, 在△ABC、△BCD、△CDE、△DEA、EAB中,AB=BC=CD=DE=EABC=CD=DE=EA=ABAC=BD=CE=DA=BE, ∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS), ∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB, ∴五边形ABCDE是正五边形; ②解:若AC=BE=CE,五边形ABCDE是正五边形,理由如下: 在△ABE、△BCA和△DEC中,AE=BA=DCAB=BC=DEBE=AC=CE, ∴△ABE≌△BCA≌△DEC(SSS), ∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC, 在△ACE和△BEC中,AE=BCCE=BEAC=CE, ∴△ACE≌△BEC(SSS), ∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB, ∵四边形ABCE内角和为360°, ∴∠ABC+∠ECB=180°, ∴AB∥CE, ∴∠ABE=∠BEC,∠BAC=∠ACE, ∴∠CAE=∠CEA=2∠ABE, ∴∠BAE=3∠ABE, 同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE, ∴五边形ABCDE是正五边形; (2)解:①若AC=CE=EA,如图3所示: 则六边形ABCDEF是正六边形;假命题;理由如下: ∵凸六边形ABCDEF的各条边都相等, ∴AB=BC=CD=DE=EF=FA, 在△AEF、△CAB和△ECD中,EF=AB=CDAF=CB=EDAE=CA=EC, ∴△AEF≌△CAB≌△ECD(SSS), 如果△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°, 而正六边形的各个内角都为120°, ∴六边形ABCDEF不是正六边形; 故答案为:假; ②若AD=BE=CF,则六边形ABCDEF是正六边形;假命题;理由如下: 如图4所示:连接AE、AC、CE、BF, 在△BFE和△FBC中,EF=CBBE=FCBF=FB, ∴△BFE≌△FBC(SSS), ∴∠BFE=∠FBC, ∵AB=AF, ∴∠AFB=∠ABF, ∴∠AFE=∠ABC, 在△FAE和△BCA中,AF=CB∠AFE=∠CBAEF=AB, ∴△FAE≌△BCA(SAS), ∴AE=CA, 同理:AE=CE, ∴AE=CA=CE, 由①得:△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°, 而正六边形的各个内角都为120°, ∴六边形ABCDEF不是正六边形; 故答案为:假. 23.(12分)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4). (1)求b,c满足的关系式; (2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式; (3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值. 【解答】解:(1)将点(﹣2,4)代入y=x2+bx+c, 得﹣2b+c=0, ∴c=2b; (2)m=-b2,n=4c-b24, ∴n=8b-b24, ∴n=2b﹣m2, (3)y=x2+bx+2b=(x+b2)2-b24+2b, 对称轴x=-b2, 当b≤0时,c≤0,函数不经过第三象限,则c=0; 此时y=x2,当﹣5≤x≤1时,函数最小值是0,最大值是25, ∴最大值与最小值之差为25;(舍去) 当b>0时,c>0,函数不经过第三象限,则△≤0, ∴0≤b≤8, ∴﹣4≤x=-b2≤0, 当﹣5≤x≤1时,函数有最小值-b24+2b, 当﹣5≤-b2<-2时,函数有最大值1+3b, 当﹣2<-b2≤1时,函数有最大值25﹣3b; 函数的最大值与最小值之差为16, 当最大值1+3b时,1+3b+b24-2b=16, ∴b=6或b=﹣10, ∵4≤b≤8, ∴b=6; 当最大值25﹣3b时,25﹣3b+b24-2b=16, ∴b=2或b=18, ∵2≤b≤4, ∴b=2; 综上所述b=2或b=6; 24.(14分)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD. (1)求AFAP的值; (2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF; (3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由. 【解答】解:(1)设AP=FD=a, ∴AF=2﹣a, ∵四边形ABCD是正方形 ∴AB∥CD ∴△AFP∽△DFC ∴APCD=AFFD 即a2=2-aa ∴a=5-1 ∴AP=FD=5-1, ∴AF=AD﹣DF=3-5 ∴AFAP=5-12 (2)在CD上截取DH=AF ∵AF=DH,∠PAF=∠D=90°,AP=FD, ∴△PAF≌△HDF(SAS) ∴PF=FH, ∵AD=CD,AF=DH ∴FD=CH=AP=5-1 ∵点E是AB中点, ∴BE=AE=1=EM ∴PE=PA+AE=5 ∵EC2=BE2+BC2=1+4=5, ∴EC=5 ∴EC=PE,CM=5-1 ∴∠P=∠ECP ∵AP∥CD ∴∠P=∠PCD ∴∠ECP=∠PCD,且CM=CH=5-1,CF=CF ∴△FCM≌△FCH(SAS) ∴FM=FH ∴FM=PF (3)若点B'在BN上,如图,以A原点,AB为y轴,AD为x轴建立平面直角坐标系, ∵EN⊥AB,AE=BE ∴AQ=BQ=AP=5-1 由旋转的性质可得AQ=AQ'=5-1,AB=AB'=2,Q'B'=QB=5-1, ∵点B(0,﹣2),点N(2,﹣1) ∴直线BN解析式为:y=12x﹣2 设点B'(x,12x﹣2) ∴AB'=x2+(12x-2)2=2 ∴x=85 ∴点B'(85,-65) ∵点Q'(5-1,0) ∴B'Q'=(5-1-85)2+3625≠5-1 ∴点B旋转后的对应点B'不落在线段BN上. 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2019/6/30 10:00:28;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521查看更多