- 2021-11-06 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学专题复习练习:最简二次根式
典型例题一 例01.下列各式中属于最简二次根式的是( ) A. B. C. D. 分析 因 解答 A 说明 最简二次根式必须满足两个条件:(1)被开方数因数是整数,因式是整式;(2)被开方数不能含有开得尽方的因数或因式. 典型例题二 例02.在二次根式中,,,,,最简二次根式的个数是( ) A.1个 B.2个 C.3个 D.4个 分析 因为,,都不是最简二次根式,所以最简二次根式有2个. 解答 B 说明 最简二次根被开方数中因数次数只能小于2,且不能含有分母. 典型例题三 例03.在根式,,,,,,,,中,最简二次根式的个数为( ). A.2 B.3 C.4 D.5 分析 的被开方数是分式,的被开方数中含有分数因数,=,,它们和 中都含有能开得尽方的因数或因式,所以这几个二次根式都不是最简二次根式. 解答 C 说明 考查最简二次根式的意义. 只要全面了解了最简二次根式的定义,这样的题目就能迎刃而解. 读者可以自行编拟类似的判断题等,互相检查对二次根式的了解情况. 典型例题四 例04.化简 分析 原式= 因,, 故原式= 解答 说明 化简时,把能开得尽方的因式移到根号外,但一定要根据其取值范围,将算术平方根移到根号外. 如果将要移出因式是多项式,必须添上括号. 典型例题五 例05.(1)化简: (2). 分析 (1)因,则, 故 (2)因,, 故 解答 ; 说明 在(1)中隐含,即的条件;在(2)中隐含,即. 典型例题六 例06.化简 解答 ∵,∴ ,. ∴ 说明 本题中与的大小关系,是以隐含的形式给出的. 被开方数可以写成两项差的平方的形式,从而可以利用本节所学公式. 典型例题七 例07.化简: 解答1:∵,∴, 原式= 解答2:∵,∴, 原式= 说明 可将被开方数的分母写成两项差的平方的形式移出根号,也可将根号外的因式移入根号内. 典型例题八 例08.把下列二次根式化成最简二次根式: (1); (2); (3) (4) 解答 (1)原式= (2)原式== (3)原式= (4)原式== 说明 考查二次根式的化简 (1)被开方数是带分数时,首先要将它化为假分数;(2)被开方数分解因数或因式后,若分子、分母有公因数(式),应先约去公因数(式),使运算简便. 典型例题九 例09.化简下列根式: (1); (2); (3) 解答 (1)由被开方式知 ∴原式= (2)由根式有意义知 即 ∴原式= (3)∵,又知 ∴原式== 说明 考查根式的化简方法. 化简根式时,常要将某些代数式移出或移入根号,但一定要注意字母的取值范围,必须保证移出或移入前后根式中符号(正负)性质不变. 典型例题十 例10.当时,求的值. 分析 因为,分母有理化后,有. 又, 把代入,得 原式=. 说明 一般而言,对于求值的题都不能把字母的取值代入原始式子进行运算,而是必须先化简再注值. 本题多项式已经化简了,故就应把代入,但考虑到x的值是个无理数,又是分母上有根号,就应把它分母有理化以后再代入,也就是说把代入代数式就显得比较简单. 同时,尽管多项式已经很简了,如果我们稍作变换,能使代入运算更加方便,也就是的式化为,运算更简. 如果把字母的取值不分青红皂白代入原式,就可能运算很繁,导致错误. 第一要把字母的取值化简,第二要把代数式化简再根据代数式的特点,适当作一点变换,就能简捷地求出代数式的值. 典型例题十一 例11.已知,化简: (1); (3) 解答 ∵,即 ∴且 即, ∴(1) (2) 说明 注意到所求的根式的被开方数是一个完全平方数,开方之后得到绝对值,显然需要a,b的范围. 这一点可由已知条件利用被开方数非负得到. 分析问题往往从结论入手,才想到如何更好地利用已知. 本例容易陷入误区情形有:①想求a,b的具体值;②想不到隐含条件;③不注意变形条件为;④看不到被开方数是完全平方数. 选择题 1.选择题 (1)把化为最简二次根式为( ) (A) (B) (C) (D) (2)下列各式中是最简二次根式的是( ) (A) (B) (C) (D) (3)下列各式中不是最简二次根式的是( ) (A) (B) (C) (D) (4)二次根式,,,,,,中最简二次根式的个数是( ) (A)1 (B)2 (C)3 (D)4 (5)下列二次式中最简二次根式是( ) (A) (B) (C) (D) (6)化简得最简二次根式为( ) (A) (B) (C) (D) 2.选择题 (1)若且,则成立的条件是 (A) (B) (C) (D) (2)当时,下列等式中成立的是 (A) (B) (C) (D) (3)下列化简中正确的是 (A) (B) (C) (D) (4)下列化简中错误的是 (A) (B) (C) (D)() (5)若,把化成最简二次根式为 (A) (B) (C) (D) 3.选择题 (1)已知,则化简得( ) (A) (B) (C) (D) (2)化简下列各式,出现错误的是( ) (A)() (B)() (C) (D)() (3)若,二次根式的值为,则等于( ) (A) (B) (C) (D) 参考答案: 1.(1)C (2)B (3)C (4)B (5)C (6)A 2.(1)C (2)C (3)D (4)B (5)C 3.(1)B (2)D (3)B 填空题 1.填空题 (1)化简:______,________. (2)化简:_________. (3)把化成最简分式得_________. (4)二次根式①,②,③,④,⑤,⑥,⑦,⑧中最简二次根式为_________. 参考答案:(1), (2) (3) (4)②⑤⑧ 解答题 1.化最简二次根式 (1) (2) (3) (4) (5) (6) (7) (8) 2.化简 (1) (2) (3) (4) (5) (6) (7) 3.求代数式的值 (1); (2) 4.已知,求的值.(精确到) 参考答案: 1.(1) (2) (3) (4) (5) (6) (7) (8) 2.(1) (2) (3) (4) (5) (6) (7) 3.(1) (2) 4.[提示:原式化为] 解答题 1.设直角三角形的两条直角边分别为、,斜边为. (1)已知,求; (2)已知,求; (3)已知,求; (4)已知,求 2.化简 (1)() (2)() 3.求值:已知 (1)当时,求; (2)时,求.(精确到) 参考答案: 1.(1)10 (2)10 (3) (4) 2.(1) (2) 3.(1) (2)查看更多