- 2021-06-23 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018人教A版数学必修一2.1.1《指数与指数幂的运算》(1)学案
重庆市万州分水中学高中数学 2.1.1 指数与指数幂的运算(1)学案 新人教A版必修1 学习目标 1. 了解指数函数模型背景及实用性、必要性; 2. 了解根式的概念及表示方法; 3. 理解根式的运算性质. 学习过程 一、课前准备 (预习教材P48~ P50,找出疑惑之处) 复习1:正方形面积公式为 ;正方体的体积公式为 . 复习2:(初中根式的概念)如果一个数的平方等于a,那么这个数叫做a的 ,记作 ; 如果一个数的立方等于a,那么这个数叫做a的 ,记作 . 二、新课导学 ※ 学习探究 探究任务一:指数函数模型应用背景 探究下面实例及问题,了解指数指数概念提出的背景,体会引入指数函数的必要性. 实例1. 某市人口平均年增长率为1.25℅,1990年人口数为a万,则x年后人口数为多少万? 实例2. 给一张报纸,先实验最多可折多少次?你能超过8次吗? 计算:若报纸长50cm,宽34cm,厚0.01mm,进行对折x次后,求对折后的面积与厚度? 问题1:国务院发展研究中心在2000年分析,我国未来20年GDP(国内生产总值)年平均增长率达7.3℅, 则x年后GDP为2000年的多少倍? 问题2:生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t 年后体内碳14的含量P与死亡时碳14关系为. 探究该式意义? 小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学. 探究任务二:根式的概念及运算 考察: ,那么就叫4的 ; ,那么3就叫27的 ; ,那么就叫做的 . 依此类推,若,,那么叫做的 . 新知:一般地,若,那么叫做的次方根 ( th root ),其中,. 简记:. 例如:,则. 反思: 当n为奇数时, n次方根情况如何? 例如:,, 记:. 当n为偶数时,正数的n次方根情况? 例如:的4次方根就是 ,记:. 强调:负数没有偶次方根;0的任何次方根都是0,即. 试试:,则的4次方根为 ; ,则的3次方根为 . 新知:像的式子就叫做根式(radical),这里n叫做根指数(radical exponent),a叫做被开方数(radicand). 试试:计算、、. 反思: 从特殊到一般,、的意义及结果? 结论:. 当是奇数时,;当是偶数时,. ※ 典型例题 例1求下类各式的值: (1) ; (2) ; (3); (4) (). 变式:计算或化简下列各式. (1); (2). 推广: (a0). ※动手试试 练1. 化简. 练2. 化简. 三、总结提升 ※ 学习小结 1. n次方根,根式的概念; 2. 根式运算性质. ※ 知识拓展 1. 整数指数幂满足不等性质:若,则. 2. 正整数指数幂满足不等性质: ① 若,则; ② 若,则. 其中N*. 学习评价 ※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 的值是( ). A. 3 B. -3 C. 3 D. 81 2. 625的4次方根是( ). A. 5 B. -5 C. ±5 D. 25 3. 化简是( ). A. B. C. D. 4. 化简= . 5. 计算:= ; . 课后作业 1. 计算:(1); (2) . [来源:Z*xx*k.Com] 2. 计算和,它们之间有什么关系? 你能得到什么结论? 3. 对比与,你能把后者归入前者吗?查看更多