- 2021-06-15 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018人教A版数学必修一第1章《集合间的基本关系》教案
课题:集合间的基本关系 课 型:新授课 教学目标: (1)了解集合之间的包含、相等关系的含义; (2)理解子集、真子集的概念; (3)能利用Venn图表达集合间的关系; (4)了解空集的含义。 教学重点:子集与空集的概念;能利用Venn图表达集合间的关系。 教学难点:弄清楚属于与包含的关系。 教学过程: 一、复习回顾: 1.提问:集合的两种表示方法? 如何用适当的方法表示下列集合? (1)10以内3的倍数; (2)1000以内3的倍数 2.用适当的符号填空: 0 N; Q; -1.5 R。 思考1:类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢? 二、新课教学 (一). 子集、空集等概念的教学: 比较下面几个例子,试发现两个集合之间的关系: (1),; (2),; (3), 由学生通过观察得结论。 1. 子集的定义: 对于两个集合A,B,如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。 记作: 读作:A包含于(is contained in)B,或B包含(contains)A 当集合A不包含于集合B时,记作 用Venn图表示两个集合间的“包含”关系: B A 如:(1)中 2. 集合相等定义: 如果A是集合B的子集,且集合B是集合A的子集,则集合A与集合B中的元素是一样的,因此集合A与集合B相等,即若,则。 如(3)中的两集合。 3. 真子集定义: 若集合,但存在元素,则称集合A是集合B的真子集(proper subset)。记作: A B(或B A) 读作:A真包含于B(或B真包含A) 如:(1)和(2)中A B,C D; 1. 空集定义: 不含有任何元素的集合称为空集(empty set),记作:。 用适当的符号填空: ; 0 ; ; 思考2:课本P7 的思考题 2. 几个重要的结论: (1) 空集是任何集合的子集; (2) 空集是任何非空集合的真子集; (3) 任何一个集合是它本身的子集; (4) 对于集合A,B,C,如果,且,那么。 说明: 1. 注意集合与元素是“属于”“不属于”的关系,集合与集合是“包含于”“不包含于”的关系; 2. 在分析有关集合问题时,要注意空集的地位。 (二)例题讲解: 例1.填空: (1). 2 N; N; A; (2).已知集合A={x|x-3x+2=0},B={1,2},C={x|x<8,x∈N},则 A B; A C; {2} C; 2 C 例2.(课本例3)写出集合的所有子集,并指出哪些是它的真子集。 例3.若集合 B A,求m的值。 (m=0或) 例4.已知集合且, 求实数m的取值范围。 () (三)课堂练习: 课本P7练习1,2,3 归纳小结: 本节课从实例入手,非常自然贴切地引出子集、真子集、空集、相等的概念及符号;并用Venn图直观地把这种关系表示出来;注意包含与属于符号的运用。 作业布置: 1. 习题1.1,第5题; 2. 预习集合的运算。 课后记:查看更多