- 2021-06-10 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
空间直角坐标系教案2
空间直角坐标系 4.3.1空间直角坐标系 学习目标 主要概念: 空间直角坐标系----从空间某一个定点O引三条互相垂直且有相同单位长度的数轴Ox、Oy、Oz,这样的坐标系叫做空间直角坐标系O-xyz,点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴。 坐标平面----通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、yOz平面、zOx平面。 右手直角坐标系----在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向,则称这个坐标系为右手直角坐标系。 空间直角坐标系中的坐标----对于空间任一点M,作出M点在三条坐标轴Ox轴、Oy轴、Oz轴上的射影,若射影在相应数轴上的坐标依次为x、y、z,则把有序实数对(x, y, z)叫做M点在此空间直角坐标系中的坐标,记作M(x, y, z),其中x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标。 教材分析 一、重点难点 本节教学重点是建立空间直角坐标系,难点是用空间直角坐标系刻画点的位置和根据点的位置表示出点的坐标。 二、教材解读 本节教材的理论知识有问题提出、知识探求、思考交流三个板块组成。 第一板块 问题提出 解读 借助平面直角坐标系,我们就可以用坐标表示平面上任意一点的位置,那么空间的点如何表示呢? 类比于平面直角坐标系的建立。通过具体情境,如要确定教室内所挂电灯的位置,一方面发现用平面直角坐标系不能再确定点的位置,需要第三个坐标,拓宽了思维空间;另一方面感受建立空间直角坐标系的必要性。 第二板块 知识探求 解读 如何建立空间直角坐标系? 1、在平面直角坐标系的基础上,通过原点再增加一根竖轴,就成了空间直角坐标系。 2、如无特别说明,本书建立的坐标系都是右手直角坐标系。 3、空间直角坐标系象平面直角坐标系一样,有“三要素”:原点、坐标轴方向、单位长度。 4、在平面上画空间直角坐标系O-xyz时,一般使 ,,且使y轴和z轴的单位长度相同,x轴上的单位长度为y轴(或z轴)的单位长度的一半,即用斜二测的方法画。 第三板块 思考交流 解读 1、为什么空间的点M能用有序实数对(x, y, z)表示? 设点M为空间直角坐标系中的一点,过点M分别作垂直于x轴、y轴、z轴的平面,依次交x轴、y轴、z轴于P、Q、R点,设点P、Q、R在x轴、y轴、z轴上的坐标分别是x、y和z,那么点M就有唯一确定的有序实数组(x, y, z);反过来,给定有序实数组(x, y, z),可以在x轴、y轴、z轴上依次取坐标为x、y和z的点P、Q和R,分别过P、Q和R点各作一个平面,分别垂直于x轴、y轴、z轴,这三个平面的唯一的交点就是有序实数组(x, y, z)确定的点M。 2、课本P.143,请标出图4.3-1中,位于yOz平面上点、的坐标;以及zOx平面上点的坐标,有什么意图? 这些点都是特殊点,其目的在于在找出这些特殊点的过程中,要善于发现它们的规律:在xOy平面上的点的竖坐标都是零,在yOz平面上的点的横坐标都是零,在zOx平面上的点的纵坐标都是零;在Ox轴上的点的纵坐标、竖坐标都是零,在Oy轴上的点的横坐标、竖坐标都是零,在Oz轴上的点的横坐标、纵坐标都是零。 在学习过程中,要养成自己善于总结归纳,发现规律的良好学习习惯。 拓展阅读 如果把坐标法理解为通过某一特定系统中的若干数量来决定空间位置的方法,那么战国时代魏人石申用距度(或入宿度)和去极度两个数据来表示恒星在天球上位置的星表,可以说是一种球面坐标系统的坐标法。古希腊的地理学家和天文学家也广泛地使用球面坐标法。西晋人裴秀(223-271)提出“制图六体”,在地图绘制中使用了相当完备的平面网络坐标法。 用坐标法来刻划动态的、连结的点,是它沟通代数与几何而成为解析几何的主要工具的关键。阿波罗尼在<<圆锥曲线论>>中,已借助坐标来描述曲线。十四世纪法国学者奥雷斯姆用“经度”和“纬度”(相当于纵坐标和横坐标)的方程来刻划动点的轨迹。十七世纪,费马和笛卡儿分别创立解析几何,他们使用的都是斜角坐标系:即选定一条直线作为X轴,在其上选定一点为原点,y的值则由那些与X轴成一固定角度的线段的长表示。 1637年笛卡儿出版了他的著作<<方法论>>,这书有三个附录,其中之一名为<<几何学>>,解析几何的思想就包含在这个附录里。笛卡儿在<<方法论>>中论述了正确的思想方法的重要性,表示要创造为实践服务的哲学。笛卡儿在分析了欧几里得几何学和代数学各自的缺点,表示要寻求一种包含这两门科学的优点而没有它们的缺点的方法。这种方法就是几何与代数的结合----解析几何。按笛卡儿自己的话来说,他创立解析几何学是为了 “决心放弃那仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练习思想的问题。我这样作,是为了研究另一种几何,即目的在于解释自然现象的几何”。关于解析几何学的产生对数学发展的重要意义,这里可以引用法国著名数学家拉格朗日的一段话:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄。但当这两门科学结合成伴侣时,它们就互相吸取新鲜的活力,从而以快速的步伐走向完善”。 十七世纪之后,西方近代数学开始了一个在本质上全新的阶段。正如恩格斯所指出的,在这个阶段里“最重要的数学方法基本上被确立了;主要由笛卡儿确立了解析几何,由耐普尔确立了对数,由莱布尼兹,也许还有牛顿确立了微积分”,而“数学中的转折点是笛卡儿的变量。有了它,运动进入了数学,因而,辩证法进入了数学,因而微分和积分的运算也就立刻成为必要的了”。恩格斯在这里不仅指出了十七世纪数学的主要内容,而且充分阐明了这些内容的重要意义。 解析几何学的创立,开始了用代数方法解决几何问题的新时代。从古希腊时起,在西方数学发展过程中,几何学似乎一直就是至高无上的。一些代数问题,也都要用几何方法解决。解析几何的产生,改变了这种传统,在数学思想上可以看作是一次飞跃,代数方程和曲线、曲面联系起来了。 最早引进负坐标的英国人沃利斯,最早把解析几何推广到三维空间的是法国人费马,最早应用三维直角坐标系的是瑞士人约翰贝努利。“坐标”一词是德国人莱布尼兹创用的。牛顿首先使用极坐标,对于螺线、心形线以及诸如天体在中心力作用下的运动轨迹的研究甚为方便。不同的坐标系统之间可以互换,最早讨论平面斜角坐标系之间互换关系的是法国人范斯库腾。 我们今天常常把直角坐标系叫做笛卡儿坐标系,其实那是经过许多后人不断完善后的结果。 网站点击 典型例题解析 M(6,-2,4) O x y z 6 2 4 例1:在空间直角坐标系中,作出点M(6,-2, 4)。 点拨点M的位置可按如下步骤作出:先在x轴上作出横坐标是6的点,再将沿与y轴平行的方向向左移动2个单位得到点,然后将沿与z轴平行的方向向上移动4个单位即得点M。 解答M点的位置如图所示。 总结对给出空间直角坐标系中的坐标作出这个点、给出具体的点写出它的空间直角坐标系中的坐标 这两类题目,要引起足够的重视,它不仅可以加深对空间直角坐标系的认识,而且有利于进一步培养空间想象能力。 变式题演练 在空间直角坐标系中,作出下列各点:A(-2,3,3);B(3,-4,2);C(4,0,-3)。 答案:略 O A B C D P x y z 例2:已知正四棱锥P-ABCD的底面边长为4,侧棱长为10,试建立适当的空间直角坐标系,写出各顶点的坐标。 点拨先由条件求出正四棱锥的高,再根据正四棱锥的对称性,建立适当的空间直角坐标系。 解答正四棱锥P-ABCD的底面边长为4,侧棱长为10, ∴正四棱锥的高为。 以正四棱锥的底面中心为原点,平行于AB、BC所在的直线分别为x轴、y轴,建立如图所示的空间直角坐标系,则正四棱锥各顶点的坐标分别为A(2,-2,0)、B(2,2,0)、C(-2,2,0)、D(-2,-2,0)、P(0,0,)。 总结在求解此类问题时,关键是能根据已知图形,建立适当的空间直角坐标系,从而便于计算所需确定的点的坐标。 变式题演练 在长方体中,AB=12,AD=8,=5,试建立适当的空间直角坐标系,写出各顶点的坐标。 答案:以A为原点,射线AB、AD、分别为x轴、y轴、z轴的正半轴,建立空间直角坐标系,则A(0,0,0)、B(12,0,0)、C(12,8,0)、D(0,8,0)、(0,0,5)、(12,0,5)、(12,8,5)、(0,8,5)。 例3:在空间直角坐标系中,求出经过A(2,3,1)且平行于坐标平面yOz的平面的方程。 点拨求与坐标平面yOz平行的平面的方程,即寻找此平面内任一点所要满足的条件,可利用与坐标平面yOz平行的平面内的点的特点来求解。 解答坐标平面yOz⊥x轴,而平面与坐标平面yOz平行, ∴平面也与x轴垂直, ∴平面内的所有点在x轴上的射影都是同一点,即平面与x轴的交点, ∴平面内的所有点的横坐标都相等。 平面过点A(2,3,1),∴平面内的所有点的横坐标都是2, ∴平面的方程为x=2。 总结对于空间直角坐标系 中的问题,可先回忆与平面直角坐标系中类似问题的求解方法,再用类比方法求解空间直角坐标系中的问题。本题类似于平面直角坐标系中,求过某一定点且与x轴(或y轴)平行的直线的方程。 变式题演练 在空间直角坐标系中,求出经过B(2,3,0)且垂直于坐标平面xOy的直线方程。 答案:所求直线的方程为x=2,y=3. 知识结构 知识点图表 空间直角坐标系 右手直角坐标系 点的坐标的确定 学法指导 1、在建立空间直角坐标系O-xyz时,要注意使,,且使y轴和z轴的单位长度相同,x轴上的单位长度为y轴(或z轴)的单位长度的一半。 2、在确定给出空间图形各顶点的坐标时,关键是能根据已知图形,建立适当的空间直角坐标系,以便于计算所需确定的点的坐标。 3、对于空间直角坐标系中的问题,要善于用类比于平面直角坐标系中相关问题的求解方法解决。查看更多