- 2021-05-13 发布 |
- 37.5 KB |
- 20页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2014年广东省中山市中考数学试卷
2014年广东省中山市中考数学试卷 2014年广东省中山市中考数学试卷 一、选择题(本大题10小题,每小题3分,共30分) 1.(3分)(2014•广东)在1,0,2,﹣3这四个数中,最大的数是( ) A. 1 B. 0 C. 2 D. ﹣3 2.(3分)(2014•广东)在下列交通标志中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D. 3.(3分)(2014•广东)计算3a﹣2a的结果正确的是( ) A. 1 B. a C. ﹣a D. ﹣5a 4.(3分)(2014•广东)把x3﹣9x分解因式,结果正确的是( ) A. x(x2﹣9) B. x(x﹣3)2 C. x(x+3)2 D. x(x+3)(x﹣3) 5.(3分)(2014•广东)一个多边形的内角和是900°,这个多边形的边数是( ) A. 4 B. 5 C. 6 D. 7 6.(3分)(2014•广东)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A. B. C. D. 7.(3分)(2014•广东)如图,▱ABCD中,下列说法一定正确的是( ) A. AC=BD B. AC⊥BD C. AB=CD D. AB=BC 8.(3分)(2014•广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为( ) A. B. C. D. 9.(3分)(2014•广东)一个等腰三角形的两边长分别是3和7,则它的周长为( ) A. 17 B. 15 C. 13 D. 13或17 10.(3分)(2014•中山)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( ) A. 函数有最小值 B. 对称轴是直线x= C. 当x<,y随x的增大而减小 D. 当﹣1<x<2时,y>0 二、填空题(本大题6小题,每小题4分,共24分) 11.(4分)(2014•广东)计算2x3÷x= _________ . 12.(4分)(2014•广东)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为 _________ . 13.(4分)(2014•广东)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE= _________ . 14.(4分)(2014•广东)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为 _________ . 15.(4分)(2014•广东)不等式组的解集是 _________ . 16.(4分)(2014•广东)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于 _________ . 三、解答题(一)(本大题3小题,每小题6分,共18分) 17.(6分)(2014•广东)计算:+|﹣4|+(﹣1)0﹣()﹣1. 18.(6分)(2014•广东)先化简,再求值:(+)•(x2﹣1),其中x=. 19.(6分)(2014•广东)如图,点D在△ABC的AB边上,且∠ACD=∠A. (1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明). 四、解答题(二)(本大题3小题,每小题8分,共24分) 20.(8分)(2014•广东)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732) 21.(8分)(2014•广东)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%. (1)求这款空调每台的进价(利润率==). (2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元? 22.(8分)(2014•广东)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图. (1)这次被调查的同学共有 _________ 名; (2)把条形统计图补充完整; (3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐? 五、解答题(三)(本大题3小题,每小题9分,共27分) 23.(9分)(2014•中山)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D. (1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值? (2)求一次函数解析式及m的值; (3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标. 24.(9分)(2014•广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF. (1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π) (2)求证:OD=OE; (3)求证:PF是⊙O的切线. 25.(9分)(2014•广东)如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0). (1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形; (2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长; (3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由. 2014年广东省中山市中考数学试卷 参考答案与试题解析 一、选择题(本大题10小题,每小题3分,共30分) 1.(2014•广东省中山市 1,3分)在1,0,2,﹣3这四个数中,最大的数是( ) A. 1 B. 0 C. 2 D. ﹣3 考点: 有理数大小比较.菁优网版权所有 分析: 根据正数大于0,0大于负数,可得答案. 解答: 解:﹣3<0<1<2, 故选:C. 点评: 本题考查了有理数比较大小,正数大于0,0大于负数是解题关键. 2.(2014•广东省中山市 2,3分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D. 考点: 中心对称图形;轴对称图形.菁优网版权所有 分析: 根据轴对称图形与中心对称图形的概念求解. 解答: 解:A、不是轴对称图形,不是中心对称图形.故此选项错误; B、不是轴对称图形,也不是中心对称图形.故此选项错误; C、是轴对称图形,也是中心对称图形.故此选项正确; D、是轴对称图形,不是中心对称图形.故此选项错误. 故选C. 点评: 此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 3.(2014•广东省中山市 3,3分)计算3a﹣2a的结果正确的是( ) A. 1 B. a C. ﹣a D. ﹣5a 考点: 合并同类项.菁优网版权所有 分析: 根据合并同类项的法则,可得答案. 解答: 解:原式=(3﹣2)a=a, 故选:B. 点评: 本题考查了合并同类项,系数相加字母部分不变是解题关键. 4.(2014•广东省中山市 4,3分)把x3﹣9x分解因式,结果正确的是( ) A. x(x2﹣9) B. x(x﹣3)2 C. x(x+3)2 D. x(x+3)(x﹣3) 考点: 提公因式法与公式法的综合运用.菁优网版权所有 分析: 先提取公因式x,再对余下的多项式利用平方差公式继续分解. 解答: 解:x3﹣9x, =x(x2﹣9), =x(x+3)(x﹣3). 故选D. 点评: 本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 5.(2014•广东省中山市 5,3分)一个多边形的内角和是900°,这个多边形的边数是( ) A. 4 B. 5 C. 6 D. 7 考点: 多边形内角与外角.菁优网版权所有 分析: 根据多边形的外角和公式(n﹣2)•180°,列式求解即可. 解答: 解:设这个多边形是n边形,根据题意得, (n﹣2)•180°=900°, 解得n=7. 故选D. 点评: 本题主要考查了多边形的内角和公式,熟记公式是解题的关键. 6.(2014•广东省中山市 6,3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A. B. C. D. 考点: 概率公式.菁优网版权所有 分析: 直接根据概率公式求解即可. 解答: 解:∵装有7个只有颜色不同的球,其中3个红球, ∴从布袋中随机摸出一个球,摸出的球是红球的概率=. 故选B. 点评: 本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键. 7.(2014•广东省中山市 7,3分)如图,▱ABCD中,下列说法一定正确的是( ) A. AC=BD B. AC⊥BD C. AB=CD D. AB=BC 考点: 平行四边形的性质.菁优网版权所有 分析: 根据平行四边形的性质分别判断各选项即可. 解答: 解:A、AC≠BD,故此选项错误; B、AC不垂直BD,故此选项错误; C、AB=CD,利用平行四边形的对边相等,故此选项正确; D、AB≠BC,故此选项错误; 故选:C. 点评: 此题主要考查了平行四边形的性质,正确把握其性质是解题关键. 8.(2014•广东省中山市 8,3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为( ) A. B. C. D. 考点: 根的判别式.菁优网版权所有 专题: 计算题. 分析: 先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可. 解答: 解:根据题意得△=(﹣3)2﹣4m>0, 解得m<. 故选B. 点评: 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 9.(2014•广东省中山市 9,3分)一个等腰三角形的两边长分别是3和7,则它的周长为( ) A. 17 B. 15 C. 13 D. 13或17 考点: 等腰三角形的性质;三角形三边关系.菁优网版权所有 分析: 由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长. 解答: 解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形; ②当等腰三角形的腰为7,底为3时,周长为3+7+7=17. 故这个等腰三角形的周长是17. 故选A. 点评: 本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论. 10.(2014•广东省中山市 10,3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( ) A. 函数有最小值 B. 对称轴是直线x= C. 当x<,y随x的增大而减小 D. 当﹣1<x<2时,y>0 考点: 二次函数的性质;二次函数的图象.菁优网版权所有 专题: 数形结合. 分析: 根据当a>0时,抛物线开口向上,顶点是抛物线的最低点对A进行判断;由于抛物线与x轴的交点坐标为(﹣1,0),(2,0),根据对称性得到抛物线的对称轴为直线x=,则可对B进行判断;根据二次函数的增减性对C进行判断;观察函数图象得到当﹣1<x<2时,图象在x轴下方,则可对D进行判断. 解答: 解:A、抛物线开口向上,二次函数有最小值,所以A选项的说法正确; B、抛物线与x轴的交点坐标为(﹣1,0),(2,0),则抛物线的对称轴为直线x=,所以B选项的说法正确; C、当x<,y随x的增大而减小,所以C选项的说法正确; D、当﹣1<x<2时,y<0,所以D选项的说法错误. 故选D. 点评: 本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣,时,y取得最小值,即顶点是抛物线的最低点;当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点. 二、填空题(本大题6小题,每小题4分,共24分) 11.(2014•广东省中山市 11,4分)计算2x3÷x= . 考点: 整式的除法.菁优网版权所有 分析: 直接利用整式的除法运算法则求出即可. 解答: 解:2x3÷x=2x2. 故答案为:2x2. 点评: 此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键. 12.(2014•广东省中山市 12,4分)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为 . 考点: 科学记数法—表示较大的数.菁优网版权所有 分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 解答: 解:将618 000 000用科学记数法表示为:6.18×108. 故答案为:6.18×108. 点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 13.(2014•广东省中山市 13,4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE= . 考点: 三角形中位线定理.菁优网版权所有 分析: 由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE. 解答: 解:∵D、E是AB、AC中点, ∴DE为△ABC的中位线, ∴ED=BC=3. 故答案为3. 点评: 本题用到的知识点为:三角形的中位线等于三角形第三边的一半. 14.(2014•广东省中山市 14,4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为 . 考点: 垂径定理;勾股定理.菁优网版权所有 分析: 作OC⊥AB于C,连结OA,根据垂径定理得到AC=BC=AB=3,然后在Rt△AOC中利用勾股定理计算OC即可. 解答: 解:作OC⊥AB于C,连结OA,如图, ∵OC⊥AB, ∴AC=BC=AB=×8=4, 在Rt△AOC中,OA=5, ∴OC===3, 即圆心O到AB的距离为3. 故答案为:3. 点评: 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理. 15.(2014•广东省中山市 15,4分)不等式组的解集是 . 考点: 解一元一次不等式组.菁优网版权所有 专题: 计算题. 分析: 分别求出不等式组中两不等式的解集,找出两解集的公共部分即可. 解答: 解:, 由①得:x<4;由②得:x>1, 则不等式组的解集为1<x<4. 故答案为:1<x<4. 点评: 此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键. 16.(2014•广东省中山市 16,4分)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于 . 考点: 旋转的性质.菁优网版权所有 分析: 根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积. 解答: 解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=, ∴BC=2,∠C=∠B=∠CAC′=∠C′=45°, ∴AD⊥BC,B′C′⊥AB, ∴AD=BC=1,AF=FC′=AC′=1, ∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1. 故答案为:﹣1. 点评: 此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键. 三、解答题(一)(本大题3小题,每小题6分,共18分) 17.(2014•广东省中山市 17,6分)计算:+|﹣4|+(﹣1)0﹣()﹣1. 考点: 实数的运算;零指数幂;负整数指数幂.菁优网版权所有 分析: 本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 解答: 解:原式=3+4+1﹣2 =6. 点评: 本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算. 18.(2014•广东省中山市 18,6分)先化简,再求值:(+)•(x2﹣1),其中x=. 考点: 分式的化简求值.菁优网版权所有 分析: 先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可. 解答: 解:原式=•(x2﹣1) =2x+2+x﹣1 =3x+1, 当x=时,原式=. 点评: 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 19.(2014•广东省中山市 19,6分)如图,点D在△ABC的AB边上,且∠ACD=∠A. (1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明). 考点: 作图—基本作图;平行线的判定.菁优网版权所有 分析: (1)根据角平分线基本作图的作法作图即可; (2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDE,再根据同位角相等两直线平行可得结论. 解答: 解:(1)如图所示: (2)DE∥AC ∵DE平分∠BDC, ∴∠BDE=∠BDC, ∵∠ACD=∠A,∠ACD+∠A=∠BDC, ∴∠A=∠BDC, ∴∠A=∠BDE, ∴DE∥AC. 点评: 此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行. 四、解答题(二)(本大题3小题,每小题8分,共24分) 20.(2014•广东省中山市 20,8分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732) 考点: 解直角三角形的应用-仰角俯角问题.菁优网版权所有 分析: 首先利用三角形的外角的性质求得∠ABC的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解. 解答: 解:∵∠CBD=∠A+∠ACB, ∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°, ∴∠A=∠ACB, ∴BC=AB=10(米). 在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米). 答:这棵树CD的高度为8.7米. 点评: 本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形. 21.(2014•广东省中山市 21,8分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%. (1)求这款空调每台的进价(利润率==). (2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元? 考点: 分式方程的应用.菁优网版权所有 分析: (1)利用利润率==这一隐藏的等量关系列出方程即可; (2)用销售量乘以每台的销售利润即可. 解答: 解:(1)设这款空调每台的进价为x元,根据题意得: =9%, 解得:x=1200, 经检验:x=1200是原方程的解. 答:这款空调每台的进价为1200元; (2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元. 点评: 本题考查了分式方程的应用,解题的关键是了解利润率的求法. 22.(2014•广东省中山市 22,8分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图. (1)这次被调查的同学共有 名; (2)把条形统计图补充完整; (3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐? 考点: 条形统计图;用样本估计总体;扇形统计图.菁优网版权所有 分析: (1)用没有剩的人数除以其所占的百分比即可; (2)用抽查的总人数减去其他三类的人数,再画出图形即可; (3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可. 解答: 解:(1)这次被调查的同学共有400÷40%=1000(名); 故答案为:1000; (2)剩少量的人数是;1000﹣400﹣250﹣150=200, 补图如下; (3)18000×=3600(人). 答:该校18000名学生一餐浪费的食物可供3600人食用一餐. 点评: 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 五、解答题(三)(本大题3小题,每小题9分,共27分) 23.(2014•广东省中山市 23,9分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D. (1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值? (2)求一次函数解析式及m的值; (3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标. 考点: 反比例函数与一次函数的交点问题.菁优网版权所有 专题: 计算题. 分析: (1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方; (2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y=可计算出m的值; (3)设P点坐标为(t,t+),利用三角形面积公式可得到••(t+4)=•1•(2﹣t﹣),解方程得到t=﹣,从而可确定P点坐标. 解答: 解:(1)当﹣4<x<﹣1时,一次函数大于反比例函数的值; (2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得, 所以一次函数解析式为y=x+, 把B(﹣1,2)代入y=得m=﹣1×2=﹣2; (3)设P点坐标为(t,t+), ∵△PCA和△PDB面积相等, ∴••(t+4)=•1•(2﹣t﹣),即得t=﹣, ∴P点坐标为(﹣,). 点评: 本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力. 24.(2014•广东省中山市 24,9分)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF. (1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π) (2)求证:OD=OE; (3)求证:PF是⊙O的切线. 考点: 切线的判定;弧长的计算.菁优网版权所有 分析: (1)根据弧长计算公式l=进行计算即可; (2)证明△POE≌△ADO可得DO=EO; (3)连接AP,PC,证出PC为EF的中垂线,再利用△CEP∽△CAP找出角的关系求解. 解答: (1)解:∵AC=12, ∴CO=6, ∴==2π; (2)证明:∵PE⊥AC,OD⊥AB, ∠PEA=90°,∠ADO=90° 在△ADO和△PEO中, , ∴△POE≌△AOD(AAS), ∴OD=EO; (3)证明:如图,连接AP,PC, ∵OA=OP, ∴∠OAP=∠OPA, 由(2)得OD=EO, ∴∠ODE=∠OED, 又∵∠AOP=∠EOD, ∴∠OPA=∠ODE, ∴AP∥DF, ∵AC是直径, ∴∠APC=90°, ∴∠PQE=90° ∴PC⊥EF, 又∵DP∥BF, ∴∠ODE=∠EFC, ∵∠OED=∠CEF, ∴∠CEF=∠EFC, ∴CE=CF, ∴PC为EF的中垂线, ∴∠EPQ=∠QPF, ∵△CEP∽△CAP ∴∠EPQ=∠EAP, ∴∠QPF=∠EAP, ∴∠QPF=∠OPA, ∵∠OPA+∠OPC=90°, ∴∠QPF+∠OPC=90°, ∴OP⊥PF, ∴PF是⊙O的切线. 点评: 本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系. 25.(2014•广东省中山市 25,9分)如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0). (1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形; (2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长; (3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由. 考点: 相似形综合题.菁优网版权所有 分析: (1)如答图1所示,利用菱形的定义证明; (2)如答图2所示,首先求出△PEF的面积的表达式,然后利用二次函数的性质求解; (3)如答图3所示,分三种情形,需要分类讨论,分别求解. 解答: (1)证明:当t=2时,DH=AH=2,则H为AD的中点,如答图1所示. 又∵EF⊥AD,∴EF为AD的垂直平分线,∴AE=DE,AF=DF. ∵AB=AC,AD⊥AB于点D,∴AD⊥BC,∠B=∠C. ∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C, ∴∠AEF=∠AFE,∴AE=AF, ∴AE=AF=DE=DF,即四边形AEDF为菱形. (2)解:如答图2所示,由(1)知EF∥BC, ∴△AEF∽△ABC, ∴,即,解得:EF=10﹣t. S△PEF=EF•DH=(10﹣t)•2t=﹣t2+10t=﹣(t﹣2)2+10 ∴当t=2秒时,S△PEF存在最大值,最大值为10,此时BP=3t=6. (3)解:存在.理由如下: ①若点E为直角顶点,如答图3①所示, 此时PE∥AD,PE=DH=2t,BP=3t. ∵PE∥AD,∴,即,此比例式不成立,故此种情形不存在; ②若点F为直角顶点,如答图3②所示, 此时PE∥AD,PF=DH=2t,BP=3t,CP=10﹣3t. ∵PF∥AD,∴,即,解得t=; ③若点P为直角顶点,如答图3③所示. 过点E作EM⊥BC于点M,过点F作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥AD. ∵EM∥AD,∴,即,解得BM=t, ∴PM=BP﹣BM=3t﹣t=t. 在Rt△EMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2. ∵FN∥AD,∴,即,解得CN=t, ∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t. 在Rt△FNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10﹣t)2=t2﹣85t+100. 在Rt△PEF中,由勾股定理得:EF2=PE2+PF2, 即:(10﹣t)2=(t2)+(t2﹣85t+100) 化简得:t2﹣35t=0, 解得:t=或t=0(舍去) ∴t=. 综上所述,当t=秒或t=秒时,△PEF为直角三角形. 点评: 本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想. 查看更多