- 2021-05-13 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
海南2103年中考数学卷
2013年中考数学试题(海南省卷) (本试卷满分120分,考试时间100分钟) 一、选择题(共14小题,每小题3分,满分42分)在下列各题的选项中,有且只有一个是正确的。 1.(2013年海南省3分)﹣5的绝对值是【 】 A. B. C. D. 【答案】C 2.(2013年海南省3分)若代数式x+3的值为2,则x等于【 】 A. B. C. D. 【答案】B。 3.(2013年海南省3分)下列计算正确的是【 】 A. B. C. D. 【答案】D。 4.(2013年海南省3分)某班5位学生参加中考体育测试的成绩(单位:分)分别是35、40、37、38、40.则这组数据的众数是【 】 A.37 B.40 C.38 D.35 【答案】B。 5.(2013年海南省3分)如图是由5个大小相同的正方体组成的几何体,它的俯视图为【 】 A. B. C. D. 【答案】A。 6.(2013年海南省3分)下列各数中,与的积为有理数的是【 】 A. B. C. D. 【答案】C。 7.(2013年海南省3分)“辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据67500用科学记数法表示为【 】 A.675×102 B.67.5×102 C.6.75×104 D.6.75×105 【答案】C。 8.(2013年海南省3分)如图,在ABCD中,AC与BD相交于点O,则下列结论不一定成立的是【 】 A.BO=DO B.CD=AB C.∠BAD=∠BCD D.AC=BD 【答案】D。 9.(2013年海南省3分)一个三角形的三条边长分别为1、2,则x的取值范围是【 】 A.1≤x≤3 B.1<x≤3 C.1≤x<3 D.1<x<3 【答案】D。 10.(2013年海南省3分)今年我省荔枝喜获丰收,有甲、乙两块面积相同的荔枝园,分别收获8600kg和9800kg,甲荔枝园比乙荔枝园平均每亩少60kg,问甲荔枝园平均每亩收获荔枝多少kg?设甲荔枝园平均每亩收获荔枝xkg,根据题意,可得方程【 】 A. B. C. D. 【答案】A。 11.(2013年海南省3分)现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是【 】 A. B. C. D. 【答案】B。 12.(2013年海南省3分)如图,在⊙O中,弦BC=1.点A是圆上一点,且∠BAC=30°,则⊙O的半径是【 】 A.1 B.2 C. D. 【答案】 A。 13.(2013年海南省3分)如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是【 】 A.AB=BC B.AC=BC C.∠B=60° D.∠ACB=60° 【答案】A。 14.(2013年海南省3分)直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为【 】 A. B. C. D. 【答案】A。 二、填空题(本大题满分1 6分,每小题4分) 15.(2013年海南省4分)因式分解:a2﹣b2= ▲ . 【答案】。 16.(2013年海南省4分)点(2,y1),(3,y2)在函数的图象上,则y1 ▲ y2(填“>”或“<”或“=”). 【答案】<。 17.(2013年海南省4分)如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,则∠A= ▲ °. 【答案】40。 18.(2013年海南省4分)如图,在梯形ABCD中,AD∥BC,AB=CD=AD=5,∠B=60°,则BC= ▲ . 【答案】10。 三、解答题(共6小题,满分62分) 19.(2013年海南省10分)计算: (1)(2013年海南省5分)计算:; 【答案】解:原式=。 (2)(2013年海南省5分)计算:. 【答案】解:原式=。 20.(2013年海南省8分)据悉,2013年财政部核定海南省发行的60亿地方政府“债券资金”,全部用于交通等重大项目建设.以下是60亿“债券资金”分配统计图: (1)请将条形统计图补充完整; (2)在扇形统计图中,a= ▲ ,b= ▲ (都精确到0.1); (3)在扇形统计图中,“教育文化”对应的扇形圆心角的度数为 ▲ °(精确到°1) 【答案】解:(1)城乡“债券资金”为:60﹣22﹣10.7﹣6.3﹣3.3﹣5.4=12.3,将条形统计图补充完整如下: (2)36.7;20.5。 (3)64. 21.(2013年海南省9分)如图,在正方形网格中,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题: (1)画出△ABC关于y轴对称的△A1B1C1; (2)画出△ABC关于原点O对称的△A2B2C2; (3)点C1的坐标是 ▲ ;点C2的坐标是 ▲ ;过C、C1、C2三点的圆的圆弧的长是 ▲ (保留π). 【答案】解:(1)△A1B1C1如图所示。 (2)△A2B2C2如图所示。 (3)(1,4);(1,﹣4);。 22.(2013年海南省8分)为迎接6月5日的“世界环境日”,某校团委开展“光盘行动”,倡议学生遏制浪费粮食行为.该校七年级(1)、(2)、(3)三个班共128人参加了活动.其中七(3)班48人参加,七(1)班参加的人数比七(2)班多10人,请问七(1)班和七(2)班各有多少人参加“光盘行动”? 【答案】解:设七(2)班有x人参加“光盘行动”,则七(1)班有(x+10)人参加“光盘行动”,依题意有 (x+10)+x+48=128, 解得x=35, 则x+10=45。 答:七(1)班有45人参加“光盘行动”,七(2)班有35人参加“光盘行动”。 23.(2013年海南省13分)(1)如图(1)点P是正方形ABCD的边CD上一点(点P与点C,D不重合),点E在BC的延长线上,且CE=CP,连接BP,DE.求证:△BCP≌△DCE; (2)直线EP交AD于F,连接BF,FC.点G是FC与BP的交点. ①若CD=2PC时,求证:BP⊥CF; ②若CD=n•PC(n是大于1的实数)时,记△BPF的面积为S1,△DPE的面积为S2.求证:S1=(n+1)S2. 【答案】证明:(1)∵在△BCP与△DCE中,, ∴△BCP≌△DCE(SAS)。 (2)①∵CP=CE,∠PCE=90°,∴∠CPE=45°。∴∠FPD=∠CPE=45°。∴∠PFD=45°。∴FD=DP。 ∵CD=2PC,∴DP=CP。∴FD=CP。 ∵在△BCP与△CDF中,, ∴△BCP≌△CDF(SAS)。 ∴∠FCD=∠CBP。 ∵∠CBP+∠BPC=90°,∴∠FCD+∠BPC=90°。 ∴∠PGC=90°,即BP⊥CF。 ②设CP=CE=1,则BC=CD=n,DP=CD﹣CP=n﹣1, 易知△FDP为等腰直角三角形,∴FD=DP=n﹣1。 , , ∴S1=(n+1)S2。 24.(2013年海南省14分)如图,二次函数的图象与x轴相交于点A(﹣3,0)、B(﹣1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx﹣4k(k≠0)的图象过点P交x轴于点Q. (1)求该二次函数的解析式; (2)当点P的坐标为(﹣4,m)时,求证:∠OPC=∠AQC; (3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时, ①求t的值; ②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由. 【答案】解:(1)∵二次函数的图象与x轴相交于点A(﹣3,0)、B(﹣1,0), ∴设二次函数的解析式为:y=a(x+3)(x+1)。 ∵二次函数的图象经过点C(0,3),∴3=a×3×1,解得a=1。 ∴二次函数的解析式为:y=(x+3)(x+1),即y =x2+4x+3。 (2)证明:在二次函数解析式y=x2+4x+3中,当x=﹣4时,y=3,∴P(﹣4,3)。 ∵P(﹣4,3),C(0,3),∴PC=4,PC∥x轴。 ∵一次函数y=kx﹣4k(k≠0)的图象交x轴于点Q,当y=0时,x=4,∴Q(4,0),OQ=4。 ∴PC=OQ。 又∵PC∥x轴,∴四边形POQC是平行四边形。 ∴∠OPC=∠AQC。 (3)①在Rt△COQ中,OC=3,OQ=4,由勾股定理得:CQ=5. 如答图1所示,过点N作ND⊥x轴于点D,则ND∥OC, ∴△QND∽△QCO。 ∴,即, 解得:。 设S=S△AMN,则: 。 又∵AQ=7,点M的速度是每秒3个单位长度, ∴点M到达终点的时间为t=, ∴(0<t≤)。 ∵<0,<,且x<时,y随x的增大而增大, ∴当t=时,△AMN的面积最大。 ②假设直线PQ能够垂直平分线段MN,则有QM=QN,且PQ⊥MN,PQ平分∠AQC。 由QM=QN,得:7﹣3t=5﹣t,解得t=1。 此时点M与点O重合,如答图2所示, 设PQ与OC交于点E,由(2)可知,四边形POQC是平行四边形, ∴OE=CE。 ∵点E到CQ的距离小于CE, ∴点E到CQ的距离小于OE。 而OE⊥x轴, ∴PQ不是∠AQC的平分线,这与假设矛盾。 ∴直线PQ不能垂直平分线段MN。查看更多