内蒙古呼和浩特市中考数学一模试卷含答案解析

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

内蒙古呼和浩特市中考数学一模试卷含答案解析

‎2017年内蒙古呼和浩特市中考数学一模试卷 ‎ ‎ 一、选择题(本题共10个小题,每小题3分,共30分)‎ ‎1.﹣2,﹣1,0,四个数中,绝对值最小的数是(  )‎ A. B.﹣2 C.0 D.﹣1‎ ‎2.下列图形中,是中心对称图形,但不是轴对称图形的是(  )‎ A. B. C. D.‎ ‎3.要使分式有意义,则x的取值应满足(  )‎ A.x≠﹣2 B.x≠2 C.x≠﹣1 D.x=1‎ ‎4.对“某市明天下雨的概率是80%”这句话,理解正确的是(  )‎ A.某市明天将有80%的时间下雨 B.某市明天将有80%的地区下雨 C.某市明天一定会下雨 D.某市明天下雨的可能性较大 ‎5.在平面直角坐标系中,点P(﹣,2)在(  )‎ A.第一象限 B.第二象限 C.第三象限 D.第四象限 ‎6.下列计算正确的是(  )‎ A.2a3•3a2=6a6 B.a3+2a2=3a5‎ C.a÷b×=a D.(﹣)÷x﹣1=‎ ‎7.设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为(  )‎ A. B. C. D.‎ ‎8.已知a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是(  )‎ A.用两个相等的实数根 B.有两个不相等的实数根 C.不确定,与b的取值有关 D.无实数根 ‎9.有以下四个命题:①半径为2的圆内接正三角形的边长为2;②有两边及其一个角对应相等的两个三角形全等;③从装有大小和质地完全相同的3个红球和2个黑球的袋子中,随机摸取1个球,摸到红色球和黑色球的可能性相等;④函数y=﹣x2+2x,当y>﹣3时,对应的x的取值为x>3或x<﹣1,其中假命题的个数为(  )‎ A.4个 B.3个 C.2个 D.1个 ‎10.如图,△ABC中AB=AC=4,∠C=72°,D是AB的中点,点E在AC上,DE⊥AB,则cos∠ABE的值为(  )‎ A. B. C. D.‎ ‎ ‎ 二、填空题(本大题共6小题,每小题3分,共18分)‎ ‎11.如图,已知a,b,c,d四条直线,a∥b,c∥d,∠1=110°,则∠‎ ‎2等于  .‎ ‎12.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件  元.‎ ‎13.在数轴上从满足|x|<2的任意实数x对应的点中随机选取一点,则取到的点对应的实数大于1的概率为  .‎ ‎14.分解因式:a3﹣6a2+5a=  .‎ ‎15.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么这个圆锥的左视图的面积是  .‎ ‎16.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为  .‎ ‎ ‎ 三、解答题(本大题共9小题,共72分)‎ ‎17.(10分)计算、求值:‎ ‎(1)计算:|﹣2|+()﹣1﹣(+1)(﹣1);‎ ‎(2)已知单项式2xm﹣1yn+3与﹣xny2m是同类项,求m,n的值.‎ ‎18.(7分)如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F ‎(1)求证:EF=DE;‎ ‎(2)若AC=BC,判断四边形ADCF的形状.‎ ‎19.(10分)为了解“足球进校园”活动开展情况,某中学利用体育课进行了定点射门测试,每人射门5次,所有班级测试结束后,随机抽取了某班学生的射门情况作为样本,对进球的人数进行整理后,绘制了不完整的统计图表,该班女生有22人,女生进球个数的众数为2,中位数为3.‎ 女生进球个数的统计表 ‎ 进球数(个)‎ ‎ 人数 ‎ 0‎ ‎ 1‎ ‎ 1‎ ‎ 2‎ ‎ 2‎ ‎ x ‎ 3‎ ‎ y ‎ 4‎ ‎ 4‎ ‎ 5‎ ‎ 2‎ ‎(1)求这个班级的男生人数,补全条形统计图,并计算出扇形统计图中进2个球的扇形的圆心角度数;‎ ‎(2)写出女生进球个数统计表中x,y的值;‎ ‎(3)若该校共有学生1880人,请你估计全校进球数不低于3个的学生大约多少人?‎ ‎20.(6分)如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行30米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(结果用含非特殊角的三角函数和根式表示即可)‎ ‎21.(6分)已知关于x的不等式组有解,求实数a的取值范围,并写出该不等式组的解集.‎ ‎22.(7分)在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=(x>0)相交于点P(1,m)‎ ‎(1)求k的值;‎ ‎(2)若双曲线上存在一点Q与点P关于直线y=x对称,直线y=kx+1与x轴交于点A,求△APQ的面积.‎ ‎23.(7分)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.‎ ‎(1)求甲、乙两种商品每件的进价分别是多少元?‎ ‎(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.‎ ‎24.(9分)如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.‎ 求证:‎ ‎(1)FC=FG;‎ ‎(2)AB2=BC•BG.‎ ‎25.(10分)抛物线y=ax2+c与x轴交于A,B两点,顶点C,点P为抛物线上一点,且位于x轴下方.‎ ‎(1)如图1,若P(1,﹣3),B(4,0).D是抛物线上一点,满足∠DPO=∠POB,且D与B分布位于直线OP的两侧,求点C与点D的坐标;‎ ‎(2)如图2,A,B是抛物线y=ax2+c与x轴的两个交点,直线PA,PB与y轴分别交于E,F两点,当点P在x轴下方的抛物线上运动时,是否为定值?若是,试求出该定值;若不是,请说明理由(记OA=OB=t)‎ ‎ ‎ ‎2017年内蒙古呼和浩特市中考数学一模试卷 参考答案与试题解析 ‎ ‎ 一、选择题(本题共10个小题,每小题3分,共30分)‎ ‎1.﹣2,﹣1,0,四个数中,绝对值最小的数是(  )‎ A. B.﹣2 C.0 D.﹣1‎ ‎【考点】18:有理数大小比较;15:绝对值.‎ ‎【分析】首先求出每个数的绝对值各是多少;然后根据有理数大小比较的法则,判断出﹣2,﹣1,0,四个数中,绝对值最小的数是哪个即可.‎ ‎【解答】解:|﹣2|=2,|﹣1|=1,|0|=0,||=,‎ ‎∵2>1>>0,‎ ‎∴﹣2,﹣1,0,四个数中,绝对值最小的数是0.‎ 故选:C.‎ ‎【点评】此题主要考查了绝对值的含义和求法,以及有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.‎ ‎ ‎ ‎2.下列图形中,是中心对称图形,但不是轴对称图形的是(  )‎ A. B. C. D.‎ ‎【考点】R5:中心对称图形;P3:轴对称图形.‎ ‎【分析】根据轴对称图形与中心对称图形的概念求解.‎ ‎【解答】解:A、不是轴对称图形,是中心对称图形.故此选项正确;‎ B、是轴对称图形,也是中心对称图形.故此选项错误;‎ C、是轴对称图形,不是中心对称图形.故此选项错误;‎ D、是轴对称图形,不是中心对称图形.故此选项错误.‎ 故选:A.‎ ‎【点评】此题主要考查了中心对称图形与轴对称图形的概念:‎ 轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;‎ 中心对称图形是要寻找对称中心,旋转180度后与原图重合.‎ ‎ ‎ ‎3.要使分式有意义,则x的取值应满足(  )‎ A.x≠﹣2 B.x≠2 C.x≠﹣1 D.x=1‎ ‎【考点】62:分式有意义的条件.‎ ‎【分析】分式有意义:分母不等于零.‎ ‎【解答】解:依题意得:﹣x+2≠0,‎ 解得x≠2.‎ 故选:B.‎ ‎【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.‎ ‎ ‎ ‎4.对“某市明天下雨的概率是80%”这句话,理解正确的是(  )‎ A.某市明天将有80%的时间下雨 B.某市明天将有80%的地区下雨 C.某市明天一定会下雨 D.某市明天下雨的可能性较大 ‎【考点】X3:概率的意义.‎ ‎【分析】根据概率的意义进行解答即可.‎ ‎【解答】解:“某市明天下雨的概率是80%”说明某市明天下雨的可能性较大,‎ 故选:D.‎ ‎【点评】本题考查的是概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.‎ ‎ ‎ ‎5.在平面直角坐标系中,点P(﹣,2)在(  )‎ A.第一象限 B.第二象限 C.第三象限 D.第四象限 ‎【考点】D1:点的坐标.‎ ‎【分析】根据各象限内点的坐标特征解答.‎ ‎【解答】解:∵﹣>0,‎ ‎∴点P(﹣,2)在第一象限.‎ 故选A.‎ ‎【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).‎ ‎ ‎ ‎6.下列计算正确的是(  )‎ A.2a3•3a2=6a6 B.a3+2a2=3a5‎ C.a÷b×=a D.(﹣)÷x﹣1=‎ ‎【考点】6C:分式的混合运算;49:单项式乘单项式;6F:负整数指数幂.‎ ‎【分析】根据整式的运算以及分式的运算法则即可求出答案.‎ ‎【解答】解:(A)原式=6a5,故A错误;‎ ‎(B)a3与2a2不是同类项,不能合并,故B错误;‎ ‎(C)原式=a××=,故C错误;‎ 故选(D)‎ ‎【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.‎ ‎ ‎ ‎7.设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为(  )‎ A. B. C. D.‎ ‎【考点】G2:反比例函数的图象.‎ ‎【分析】根据反比例函数解析式以及z=,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.‎ ‎【解答】解:∵y=(k≠0,x>0),‎ ‎∴z===(k≠0,x>0).‎ ‎∵反比例函数y=(k≠0,x>0)的图象在第一象限,‎ ‎∴k>0,‎ ‎∴>0.‎ ‎∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.‎ 故选D.‎ ‎【点评】本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.‎ ‎ ‎ ‎8.已知a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是(  )‎ A.用两个相等的实数根 B.有两个不相等的实数根 C.不确定,与b的取值有关 D.无实数根 ‎【考点】AA:根的判别式.‎ ‎【分析】利用完全平方的展开式将(a﹣c)2展开,即可得出ac<0,再结合方程ax2+bx+c=0根的判别式△=b2﹣4ac,即可得出△>0,由此即可得出结论.‎ ‎【解答】解:∵(a﹣c)2=a2+c2﹣2ac>a2+c2,‎ ‎∴ac<0.‎ 在方程ax2+bx+c=0中,‎ ‎∵△=b2﹣4ac≥﹣4ac>0,‎ ‎∴方程ax2+bx+c=0有两个不相等的实数根.‎ 故选B.‎ ‎【点评】此题考查了根的判别式,用到的知识点是一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了完全平方公式.‎ ‎ ‎ ‎9.有以下四个命题:①半径为2的圆内接正三角形的边长为2;②有两边及其一个角对应相等的两个三角形全等;③从装有大小和质地完全相同的3个红球和2个黑球的袋子中,随机摸取1个球,摸到红色球和黑色球的可能性相等;④函数y=﹣x2+2x,当y>﹣3时,对应的x的取值为x>3或x<﹣1,其中假命题的个数为(  )‎ A.4个 B.3个 C.2个 D.1个 ‎【考点】O1:命题与定理.‎ ‎【分析】利用正多边形和圆、全等三角形的判定、概率公式及二次函数的性质分别判断后即可确定正确的选项.‎ ‎【解答】解:①半径为2的圆内接正三角形的边长为2,正确,是真命题;‎ ‎②有两边及其夹角对应相等的两个三角形全等,故错误,是假命题;‎ ‎③从装有大小和质地完全相同的3个红球和2个黑球的袋子中,随机摸取1个球,摸到红色球的可能性大于摸到黑色球的可能性,故错误,是假命题;‎ ‎④函数y=﹣x2+2x,当y>﹣3时,对应的x的取值为﹣1<x<‎ ‎3,故错误,是假命题,‎ 假命题有3个,‎ 故选B.‎ ‎【点评】本题考查了命题与定理的知识,解题的关键是了解正多边形和圆、全等三角形的判定、概率公式及二次函数的性质的知识,难度不大.‎ ‎ ‎ ‎10.如图,△ABC中AB=AC=4,∠C=72°,D是AB的中点,点E在AC上,DE⊥AB,则cos∠ABE的值为(  )‎ A. B. C. D.‎ ‎【考点】S3:黄金分割;KG:线段垂直平分线的性质;KH:等腰三角形的性质;T7:解直角三角形.‎ ‎【分析】根据三角形内角和定理求出∠A,根据等腰三角形的性质得到点E是线段AC的黄金分割点,根据余弦的概念计算即可.‎ ‎【解答】解:∵AB=AC,∠C=72°,‎ ‎∴∠A=36°,‎ ‎∵D是AB的中点,点E在AC上,DE⊥AB,‎ ‎∴EA=EB,‎ ‎∴∠ABE=∠A=36°,‎ ‎∴点E是线段AC的黄金分割点,‎ ‎∴BE=AE=×4=2(﹣1),‎ ‎∴cos∠ABE==,‎ 故选:C.‎ ‎【点评】本题考查的是等腰三角形的性质、线段垂直平分线的判定和性质、黄金分割的概念,掌握等腰三角形的性质、熟记黄金比值是解题的关键.‎ ‎ ‎ 二、填空题(本大题共6小题,每小题3分,共18分)‎ ‎11.如图,已知a,b,c,d四条直线,a∥b,c∥d,∠1=110°,则∠2等于 70° .‎ ‎【考点】JA:平行线的性质.‎ ‎【分析】根据平行线的性质得到∠3=∠1,4=∠3,然后由邻补角的定义即可得到结论.‎ ‎【解答】解:∵a∥b,c∥d,‎ ‎∴∠3=∠1,∠4=∠3,‎ ‎∴∠1=∠4=110°,‎ ‎∴∠2=180°﹣∠4=70°,‎ 故答案为:70°.‎ ‎【点评】本题考查了平行线的性质,解题时注意:运用两直线平行,同位角相等是解答此题的关键.‎ ‎ ‎ ‎12.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件 150 元.‎ ‎【考点】8A:一元一次方程的应用.‎ ‎【分析】设该商品的标价为每件为x元,根据八折出售可获利20元,可得出方程:80%x﹣100=20,再解答即可.‎ ‎【解答】解:设该商品的标价为每件x元,‎ 由题意得:80%x﹣100=20,‎ 解得:x=150.‎ 答:该商品的标价为每件150元.‎ 故答案为:150.‎ ‎【点评】此题考查了一元一次方程的应用,关键是仔细审题,得出等量关系,列出方程,难度一般.‎ ‎ ‎ ‎13.在数轴上从满足|x|<2的任意实数x对应的点中随机选取一点,则取到的点对应的实数大于1的概率为  .‎ ‎【考点】X5:几何概率;29:实数与数轴.‎ ‎【分析】直接利用数轴的性质,结合a的取值范围得出答案.‎ ‎【解答】解:∵|x|<2,‎ ‎∴﹣2<x<2,在数轴上任取一个比﹣2大比2小的实数a对应的点有:﹣2<a<﹣1,﹣1<a<0,0<a<1,1<a<2,4种情况,‎ 当a>1时有1<a<2,‎ ‎∴取到的点对应的实数大于1的概率为:,‎ 故答案为:.‎ ‎【点评】此题主要考查了几何概率,正确利用数轴,结合a的取值范围求解是解题关键.‎ ‎ ‎ ‎14.分解因式:a3﹣6a2+5a= a(a﹣5)(a﹣1) .‎ ‎【考点】57:因式分解﹣十字相乘法等;53:因式分解﹣提公因式法.‎ ‎【分析】原式提取公因式,再利用十字相乘法分解即可.‎ ‎【解答】解:原式=a(a2﹣6a+5)=a(a﹣5)(a﹣1).‎ 故答案是:a(a﹣5)(a﹣1).‎ ‎【点评】此题考查了提公因式法与十字相乘法的综合运用,熟练掌握因式分解的方法是解本题的关键.‎ ‎ ‎ ‎15.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么这个圆锥的左视图的面积是 4 .‎ ‎【考点】MP:圆锥的计算;U3:由三视图判断几何体.‎ ‎【分析】先利用圆的面积公式得到圆锥的底面圆的半径为2,再利用等边三角形的性质得母线长,然后根据勾股定理计算圆锥的高.‎ ‎【解答】解:设圆锥的底面圆的半径为r,则πr2=4π,解得r=2,‎ 因为圆锥的主视图是等边三角形,‎ 所以圆锥的母线长为4,‎ 所以它的左视图的高==2,‎ 所以左视图的面积为×4×2=4.‎ 故答案为4.‎ ‎【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.‎ ‎ ‎ ‎16.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为 2﹣2 .‎ ‎【考点】L8:菱形的性质;KI:等腰三角形的判定;KK:等边三角形的性质.‎ ‎【分析】分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD的最小值,即可判断.‎ ‎【解答】解:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,为2;‎ ‎②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC(除点C外)上的所有点都满足△PBC是等腰三角形,当点P在BD上时,PD最小,最小值为2√3﹣2;‎ ‎③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足△‎ PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在; ‎ 综上所述,PD的最小值为2﹣2.‎ ‎【点评】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.‎ ‎ ‎ 三、解答题(本大题共9小题,共72分)‎ ‎17.(10分)(2017•呼和浩特一模)计算、求值:‎ ‎(1)计算:|﹣2|+()﹣1﹣(+1)(﹣1);‎ ‎(2)已知单项式2xm﹣1yn+3与﹣xny2m是同类项,求m,n的值.‎ ‎【考点】79:二次根式的混合运算;34:同类项;6F:负整数指数幂.‎ ‎【分析】(1)利用绝对值的定义结合平方差公式计算得出答案;‎ ‎(2)直接利用同类项的定义分析得出答案.‎ ‎【解答】解:(1)|﹣2|+()﹣1﹣(+1)(﹣1)‎ ‎=2﹣+2﹣(5﹣1)‎ ‎=﹣;‎ ‎(2)∵单项式2xm﹣1yn+3与﹣xny2m是同类项,‎ ‎∴,‎ 解得:.‎ ‎【点评】此题主要考查了二次根式的混合运算以及同类项定义,正确化简各数是解题关键.‎ ‎ ‎ ‎18.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F ‎(1)求证:EF=DE;‎ ‎(2)若AC=BC,判断四边形ADCF的形状.‎ ‎【考点】LC:矩形的判定;KD:全等三角形的判定与性质;KX:三角形中位线定理.‎ ‎【分析】(1)首先根据三角形的中位线定理得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE;‎ ‎(2)首先证得四边形ADCF是平行四边形、四边形DBCF也为平行四边形,从而得到BC=DF,然后根据AC=BC得到AC=DE,从而得到四边形ADCF是矩形.‎ ‎【解答】解:(1)∵DE是△ABC的中位线,‎ ‎∴E为AC中点,‎ ‎∴AE=EC,‎ ‎∵CF∥BD,‎ ‎∴∠ADE=∠F,‎ 在△ADE和△CFE中,‎ ‎∵,‎ ‎∴△ADE≌△CFE(AAS),‎ ‎∴DE=FE.‎ ‎(2)解:四边形ADCF是矩形.‎ ‎∵DE=FE,AE=AC,‎ ‎∴四边形ADCF是平行四边形,‎ ‎∵AD=BD,‎ ‎∴BD=CF,‎ ‎∴四边形DBCF为平行四边形,‎ ‎∴BC=DF,‎ ‎∵AC=BC,‎ ‎∴AC=DE,‎ ‎∴四边形ADCF是正方形.‎ ‎【点评】本题考查了矩形的判定、全等三角形的判定与性质及三角形的中位线定理的知识,三角形的中位线平行于第三边且等于第三边的一半,难度不大.‎ ‎ ‎ ‎19.(10分)(2017•呼和浩特一模)为了解“足球进校园”活动开展情况,某中学利用体育课进行了定点射门测试,每人射门5次,所有班级测试结束后,随机抽取了某班学生的射门情况作为样本,对进球的人数进行整理后,绘制了不完整的统计图表,该班女生有22人,女生进球个数的众数为2,中位数为3.‎ 女生进球个数的统计表 ‎ 进球数(个)‎ ‎ 人数 ‎ 0‎ ‎ 1‎ ‎ 1‎ ‎ 2‎ ‎ 2‎ ‎ x ‎ 3‎ ‎ y ‎ 4‎ ‎ 4‎ ‎ 5‎ ‎ 2‎ ‎(1)求这个班级的男生人数,补全条形统计图,并计算出扇形统计图中进2个球的扇形的圆心角度数;‎ ‎(2)写出女生进球个数统计表中x,y的值;‎ ‎(3)若该校共有学生1880人,请你估计全校进球数不低于3个的学生大约多少人?‎ ‎【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图;W4:中位数;W5:众数.‎ ‎【分析】(1)根据进球数为3个的人数除以占的百分比求出男生总人数即可;求出进球数为4个的人数,以及进球数为2个的圆心角度数,补全条形统计图即可;‎ ‎(2)由题意得,x+y=22﹣1﹣2﹣4﹣2=13,由于女生进球个数的众数为2,中位数为3,于是得到结论;‎ ‎(3)求出进球数不低于3个的百分比,乘以1880即可得到结果.‎ ‎【解答】解:(1)这个班级的男生人数为6÷24%=25(人),‎ 则这个班级的男生人数为25人;男生进球数为4个的人数为25﹣(1+2+5+6+4)=7(人),进2个球的扇形圆心角度数为360°×=72°;‎ 补全条形统计图,如图所示:‎ ‎(2)由题意得,x+y=22﹣1﹣2﹣4﹣2=13,‎ ‎∵n女生进球个数的众数为2,中位数为3,‎ ‎∴x=7,y=6;‎ ‎(3)根据题意得:47个学生中女生进球个数为6+4+2=12;男生进球数为6+7+4=17,‎ ‎∴1880×=1160(人),‎ 则全校进球数不低于3个的学生大约有1160人.‎ ‎【点评】此题考查了条形统计图,扇形统计图,用样本估计总体,弄清题中的数据是解本题的关键.‎ ‎ ‎ ‎20.如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行30米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(结果用含非特殊角的三角函数和根式表示即可)‎ ‎【考点】TB:解直角三角形的应用﹣方向角问题.‎ ‎【分析】作CE⊥AB于E.由题意可以假设CE=BE=x,在Rt△CAE中,求出AE,根据AB=AE﹣BE,列出方程即可解决问题.‎ ‎【解答】解:作CE⊥AB于E.‎ 由题意:∠CAE=31°,∠CBE=45°,AB=30,‎ 在Rt△CBE中,∵∠CEB=90°,∠CBE=45°,‎ ‎∴可以假设CE=BE=x,‎ 在Rt△CAE中,∵∠CEA=90°,‎ ‎∴AE==,‎ ‎∵AB=AE﹣BE=﹣x=30,‎ ‎∴x=,‎ 答:这条河的宽度为m.‎ ‎【点评】本题考查解直角三角形、方位角、锐角三角函数等知识,解题的关键是熟练掌握三角函数的定义,学会用方程的思想思考问题,属于中考常考题型.‎ ‎ ‎ ‎21.已知关于x的不等式组有解,求实数a的取值范围,并写出该不等式组的解集.‎ ‎【考点】CB:解一元一次不等式组.‎ ‎【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.‎ ‎【解答】解:解不等式3x﹣a≥0,得:x≥,‎ 解不等式(x﹣2)>3x+4,得:x<﹣2,‎ 由题意得:<﹣2,‎ 解得:a<﹣6,‎ ‎∴不等式组的解集为≤x<﹣2.‎ ‎【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.‎ ‎ ‎ ‎22.在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=(x>0)相交于点P(1,m)‎ ‎(1)求k的值;‎ ‎(2)若双曲线上存在一点Q与点P关于直线y=x对称,直线y=kx+1与x轴交于点A,求△APQ的面积.‎ ‎【考点】G8:反比例函数与一次函数的交点问题.‎ ‎【分析】(1)将P的坐标代入双曲线中求出m的值,然后将P的坐标代入直线解析式中求出k的值.‎ ‎(2)求出P关于y=x的对称点Q,然后利用待定系数法求出直线PQ的解析式,然后求出点B的坐标,最后利用S△APQ=S△APB﹣S△AQB即可求出答案.‎ ‎【解答】解:(1)将x=1代入y=,‎ ‎∴y=2,‎ ‎∴P(1,2)‎ ‎∴将P(1,2)代入y=kx+1‎ ‎∴k=1,‎ ‎(2)易知P(1,2)关于直线y=x的对称点为Q(2,1)‎ 设直线PQ的解析式为:y=kx+b,‎ 将P、Q的坐标代入上式,‎ ‎∴‎ 解得:‎ ‎∴直线PQ的解析式为:y=﹣x+3‎ ‎∴令y=0代入y=﹣x+3‎ ‎∴x=3,‎ ‎∴S△APQ=S△APB﹣S△AQB ‎=×4×(2﹣1)‎ ‎=2‎ ‎【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是熟练运用待定系数法,本题属于中等题型.‎ ‎ ‎ ‎23.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.‎ ‎(1)求甲、乙两种商品每件的进价分别是多少元?‎ ‎(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.‎ ‎【考点】FH:一次函数的应用;9A:二元一次方程组的应用;C9:一元一次不等式的应用.‎ ‎【分析】(1)根据题意可以列出相应的方程组,从而可以解答本题;‎ ‎(2)根据题意可以得到利润与甲种商品的关系,由甲种商品的数量不少于乙种商品数量的4倍,可以得到甲种商品的取值范围,从而可以求得获利最大的进货方案,以及最大利润.‎ ‎【解答】解:(1)设甲、乙两种商品每件的进价分别是x元、y元,‎ ‎,‎ 解得,,‎ 即甲、乙两种商品每件的进价分别是30元、70元;‎ ‎(2)设购买甲种商品a件,获利为w元,‎ w=(40﹣30)a+(90﹣70)(100﹣a)=﹣10a+2000,‎ ‎∵a≥4(100﹣a),‎ 解得,a≥80,‎ ‎∴当a=80时,w取得最大值,此时w=1200,‎ 即获利最大的进货方案是购买甲种商品80件,乙种商品20件,最大利润是1200元.‎ ‎【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和不等式的性质解答问题.‎ ‎ ‎ ‎24.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.‎ 求证:‎ ‎(1)FC=FG;‎ ‎(2)AB2=BC•BG.‎ ‎【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质.‎ ‎【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;‎ ‎(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.‎ ‎【解答】证明:(1)∵EF∥BC,AB⊥BG,‎ ‎∴EF⊥AD,‎ ‎∵E是AD的中点,‎ ‎∴FA=FD,‎ ‎∴∠FAD=∠D,‎ ‎∵GB⊥AB,‎ ‎∴∠GAB+∠G=∠D+∠DCB=90°,‎ ‎∴∠DCB=∠G,‎ ‎∵∠DCB=∠GCF,‎ ‎∴∠GCF=∠G ‎,∴FC=FG;‎ ‎(2)连接AC,如图所示:‎ ‎∵AB⊥BG,‎ ‎∴AC是⊙O的直径,‎ ‎∵FD是⊙O的切线,切点为C,‎ ‎∴∠DCB=∠CAB,‎ ‎∵∠DCB=∠G,‎ ‎∴∠CAB=∠G,‎ ‎∵∠CBA=∠GBA=90°,‎ ‎∴△ABC∽△GBA,‎ ‎∴=,‎ ‎∴AB2=BC•BG.‎ ‎【点评】本题考查了圆周角定理、相似三角形的判定与性质、等腰三角形的判定与性质、弦切角定理等知识;熟练掌握圆周角定理和弦切角定理,证明三角形相似是解决问题(2)的关键.‎ ‎ ‎ ‎25.(10分)(2017•呼和浩特一模)抛物线y=ax2+c与x轴交于A,B两点,顶点C,点P为抛物线上一点,且位于x轴下方.‎ ‎(1)如图1,若P(1,﹣3),B(4,0).D是抛物线上一点,满足∠DPO=∠POB,且D与B分布位于直线OP的两侧,求点C与点D的坐标;‎ ‎(2)如图2,A,B是抛物线y=ax2+c与x轴的两个交点,直线PA,PB与y轴分别交于E,F两点,当点P在x轴下方的抛物线上运动时,是否为定值?若是,试求出该定值;若不是,请说明理由(记OA=OB=t)‎ ‎【考点】HF:二次函数综合题.‎ ‎【分析】(1)根据待定系数法求函数解析式,可得答案;根据平行线的判定,可得PD∥OB,根据函数值相等两点关于对称轴对称,可得D点坐标;‎ ‎(2)根据待定系数法,可得E、F点的坐标,根据分式的性质,可得答案.‎ ‎【解答】解:(1)将P(1,﹣3),B(4,0)代入y=ax2+c,得 ‎,‎ 解得,‎ 抛物线的解析式为y=x2﹣.‎ ‎∴C(0,﹣)‎ 如图1,‎ 当点D在OP左侧时,‎ 由∠DPO=∠POB,得 DP∥OB,‎ D与P关于y轴对称,P(1,﹣3),‎ 得D(﹣1,﹣3);‎ ‎(2)点P运动时,是定值,定值为2,理由如下:‎ 作PQ⊥AB于Q点,设P(m,am2+c),A(﹣t,0),B(t,0),则at2+c=0,c=﹣at2.‎ ‎∵PQ∥OF,‎ ‎∴=,‎ ‎∴OF==﹣==amt+at2.‎ 同理OE=﹣amt+at2.‎ ‎∴OE+OF=2at2=﹣2c=2OC.‎ ‎∴=2.‎ ‎【点评】本题考查了二次函数综合题,①利用待定系数法求函数解析式;②利用函数值相等的点关于对称轴对称得出D点坐标是解题关键;(2)利用待定系数法求出E、F点坐标是解题关键.‎ ‎ ‎
查看更多

相关文章

您可能关注的文档