- 2021-05-10 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
钦州市2015年中考数学卷
2015年广西钦州市中考数学试题 一、选择题(每小题3分,共36分) 1.(3分)下列图形中,是轴对称图形的是( ) 2.(3分)下列实数中,无理数是( ) A.﹣1 B. C.5 D. 3.(3分)计算的结果是( ) A. B. C. D.a 4.(3分)下列几何体中,主视图是圆的是( ) 5.(3分)国家统计局4月15日发布数据,初步核算,2015年一季度全国国内生产总值为140667亿元,其中数据140667用科学记数法表示为( ) A.1.40667×105 B.1.40667×106 C.14.0667×104 D.0.140667×106 6.(3分)如图,要使▱ABCD成为菱形,则需添加的一个条件是( ) A.AC=AD B.BA=BC C.∠ABC=90° D.AC=BD 7.(3分)用配方法解方程,配方后可得( ) A. B. C. D. 8.(3分)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是( ) A.(2,5) B.(﹣8,5) C.(﹣8,﹣1) D.(2,﹣1) 9.(3分)对于函数,下列说法错误的是( ) A.这个函数的图象位于第一、第三象限 B.这个函数的图象既是轴对称图形又是中心对称图形 C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小 10.(3分)在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为( ) A.3 B.5 C.8 D.10 11.(3分)如图,AD是△ABC的角平分线,则AB:AC等于( ) A.BD:CD B.AD:CD C.BC:AD D.BC:AC 12.(3分)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为( ) A. B.2 C. D.20 二、填空题(每小题3分,共18分) 13.(3分)如图,直线AB和OC相交于点O,∠AOC=100°,则∠1= 度. 14.(3分)一组数据3,5,5,4,5,6的众数是 . 15.(3分)一次函数()的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第 象限. 16.(3分)当m=2105时,计算:= . 17.(3分)如图,在4×4的正方形网格中,每个小正方形的边长均为1,将△AOB绕点O逆时针旋转90°得到△COD,则旋转过程中形成的阴影部分的面积为 . 18.(3分)如图,以O为位似中心,将边长为256的正方形OABC依次作位似变化,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的,经第三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的,......,按此规律,经第n次变化后,所得正方形OAnBnCn的边长为正方形OABC边长的倒数,则n= . 三、解答题(8个小题,共66分) 19.(5分)计算: 20.(6分)如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF. 21.(8分)抛物线与x轴交于A、B两点(点A在点B的左侧),点C是此抛物线的顶点. (1)求点A、B、C的坐标; (2)点C在反比例函数()的图象上,求反比例函数的解析式. 22.(8分)某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元. (1)每个气排球和每个篮球的价格各是多少元? (2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元? 23.(10分)某校决定在6月8日“世界海洋日”开展系列海洋知识的宣传活动,活动有A.唱歌、B.舞蹈、C.绘画、D.演讲四项宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表: 请结合统计图表,回答下列问题: (1)本次抽查的学生共 人,a= ,并将条形统计图补充完整; (2)如果该校学生有1800人,请你估计该校喜欢“唱歌”这项宣传方式的学生约有多少人? (3)学校采用抽签方式让每班在A、B、C、D四项宣传方式中随机抽取两项进行展示,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率. 24.(9分)如图,船A、B在东西方向的海岸线MN上,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向上,在船B的北偏西37°方向上,AP=30海里. (1)尺规作图:过点P作AB所在直线的垂线,垂足为E(要求:保留作图痕迹,不写作法); (2)求船P到海岸线MN的距离(即PE的长); (3)若船A、船B分别以20海里/时、15海里/时的速度同时出发,匀速沿直线前往救援,试通过计算判断哪艘船先到达船P处.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) 25.(8分)如图,AB为⊙O的直径,AD为弦,∠DBC=∠A. (1)求证:BC是⊙O的切线; (2)连接OC,如果OC恰好经过弦BD的中点E,且tanC=,AD=3,求直径AB的长. 26.(12分)如图,在平面直角坐标系中,以点B(0,8)为端点的射线BG∥x轴,点A是射线BG上的一个动点(点A与点B不重合).在射线AG上取AD=OB,作线段AD的垂直平分线,垂足为E,且与x轴交于点F,过点A作AC⊥OA,交射线EF于点C.连接OC、CD,设点A的横坐标为t. (1)用含t的式子表示点E的坐标为_______; (2)当t为何值时,∠OCD=180°? (3)当点C与点F不重合时,设△OCF的面积为S,求S与t之间的函数解析式.查看更多