2020中考数学一轮复习 教学设计十一(一元一次不等式) 鲁教版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2020中考数学一轮复习 教学设计十一(一元一次不等式) 鲁教版

一元一次不等式 章节 第二章 课题 一元一次不等式 课型 复习课 教法 教学目标(知识、能力、教育)‎ ‎1. 能够根据具体问题中的大小关系了解不等式的意义。掌握不等式的基本性质。‎ ‎2. 理解不等式(组)的解及解集的含义;会解简单的一元一次不等式,并能在数轴上表示一元一次不等式的解集;会解一元一次不等式组,并会在数轴上确定其解集;初步体会数形结合的思想.‎ 教学重点 会解一元一次不等式和一元一次不等式组。‎ 教学难点 体会数形结合的思想。‎ 教学媒体 学案 教学过程 一:【课前预习】‎ ‎(一):【知识梳理】‎ ‎ 1.不等式:用不等号(<、≤、>、≥、≠)表示 的式子叫不等式。‎ ‎2.不等式的基本性质:(1)不等式的两边都加上(或减去) ,不等号的 .(2)不等式的两边都乘以(或除以) ,不等号的 .(3)不等式的两边都乘以(或除以) ,不等号的方向 .‎ ‎3.不等式的解:能使不等式成立的 的值,叫做不等式的解.‎ ‎4.不等式的解集:一个含有未知数的不等式的 ,组成这个不等式的解集.‎ ‎5.解不等式:求不等式 的过程叫做解不等式.‎ ‎6.一元一次不等式:只含有 ,并且未知数的最高次数是 ,系数不为零的不等式叫做一元一次不等式.‎ ‎7.解一元一次不等式易错点:(1)不等式两边部乘以(或除以)同一个负数时,不等号的方向要改变,这是同学们经常忽略的地方,一定要注意;(2)在不等式两边不能同时乘以0.‎ ‎8.一元一次不等式的解法:解一元一次不等式的步骤:① ,② ,‎ 5‎ ‎③ ,④ ,⑤ (不等号的改变问题)‎ ‎9.求不等式(组)的正整数解或负整数解等特解时,可先求出这个不等式(组)的所有解,再从中找出所需特解.‎ ‎10.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.‎ ‎11.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的 ,叫做这个一元一次不等式组的解集.‎ ‎12.解不等式组:求不等式组解集的过程,叫做解不等式组.‎ ‎13.一元一次不等式组的解.‎ ‎ (1)分别求出不等式组中各个不等式的解集;(2)利用数轴或口诀求出这些解集的公共部分,即这个不等式的解。(口诀:同大取大,同小取小;大于小的小于大的,取两者之间;大于大的小于小的,无解。)‎ ‎14.不等式组的分类及解集(a<b).‎ ‎(二):【课前练习】‎ ‎1. 下列式子中是一元一次不等式的是( )‎ A.-2>-5 B.x2>‎4 C.xy>0 D.–x< -1 ‎2.下列说法正确的是( )‎ A.不等式两边都乘以同一个数,不等号的方向不变;‎ B.不等式两边都乘以同一个不为零的数,不等号的方向不变;‎ C.不等式两边都乘以同一个非负数,不等号的方向不变;‎ D.不等式两边都乘以(或除以)同一个正数,不等号的方向不变;‎ ‎3. 关于x的不等式2x-a≤-1的解集如图所示,则a的取值是( ) ‎ A.0 B.-‎3 C.-2 D.-1‎ 5‎ ‎4. 不等式2x≥x+2的解集是_________.‎ ‎5. 把不等式组的解集表示在数轴上,确的是图中的( )‎ ‎ ‎ ‎ ‎ 二:【经典考题剖析】‎ ‎ 1. 解不等式,并在数轴上表示出它的解集。‎ 分析:按基本步骤进行,注意避免漏乘、移项变号,特别注意当不等式两边同时乘以或除以一个负数时,不等号的方向要改变。答案: ‎ ‎2. 解不等式组,并在数轴上表示出它的解集。‎ 分析:不等式组的解集是各不等式解集的公共部分,故应将不等式组里各不等式分别求出解集,标到数轴上找出公共部分,数轴上要注意空心点与实心点的区别,与方程组的解法相比较可见思路不同。答案:-1≤<5‎ ‎3. 求方程组的正整数解。‎ 分析:由题设知,必为正整数,由方程组可解得用含的代数式表示,又 均大于零,可得出不等式组,解出的范围,再由为正整数可得=6、7、8,分别代入可得解。答案:当=6时,;当=8时, ‎ ‎4. 已知不等式≤0,的正整数解只有1、2、3,求。‎ 略解:先解≤0可得:,考虑整数解的定义,并结合数轴确定允许的范围,可得3≤<4,解得9≤<12。不要被“求”二字误导,以为只是某个值。‎ ‎5. 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 5‎ ‎、B两种产品共50件,已知生产一件A种产品用甲种原料‎9千克,乙种原料‎3千克,可获利700元;生产一件B种产品用甲种原料‎4千克,乙种原料10千克,可获利1200元。‎ ‎(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;‎ ‎(2)设生产A、B两种产品总利润为元,其中一种产品生产件数为件,试写出 与之间的函数关系式,并利用函数的性质说明那种方案获利最大?最大利润是多少?略解:(1)设生产A种产品件,那么B种产品件,则: ‎ 解得30≤≤32‎ ‎ ∴=30、31、32,依的值分类,可设计三种方案;‎ ‎(2)设安排生产A种产品件,那么: ‎ 整理得:(=30、31、32)‎ 根据一次函数的性质,当=30时,对应方案的利润最大,最大利润为45 000元。‎ 三:【课后训练】‎ ‎ 1.如图⑴所示,天平右盘中的每个破码的质量 都是‎1g,则物体 A的质量m(g)的取值范围.‎ 在数轴上:可表示为图⑵中的( )‎ ‎2.使不等式x-5>4x—l成立的值中的最大的整数是( )‎ ‎ A.2 B.-‎1 C.-2 D.0‎ ‎3.不等式2(x-2)≤x—2的非负整数解的个数为( )‎ ‎ A.1 B.‎2 C.3 D.4‎ ‎4.使、、(x-3)0三个式子都有意义,x的取值范围是( )‎ ‎ A.x>0 B.x≥0且x≠‎3 C.x>0且x≠3 D.一l≤x≤0‎ ‎5.不等式组的解集为( )‎ ‎ A.x>l或x<-2 B.x>l C、-2 <x<1 D、x<2‎ ‎6.不等式组的整数解是______________.‎ ‎7.解不等式并把解集在数轴上表示出来;‎ 5‎ ‎(1);(2);(3)‎ ‎8.解不等式组 ‎9.已知,当为何整数时,方程组的解都是负数?‎ ‎10.将若干只鸟放入若干个笼子,若每个笼子里只放4只,则有一只鸟无笼可放;若每个笼子放5只,则有一个笼子无鸟可放。问至少有几只鸟?几个鸟笼?‎ 四:【课后小结】‎ 布置作业 5‎
查看更多

相关文章

您可能关注的文档