浙江省舟山市中考数学试卷

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

浙江省舟山市中考数学试卷

‎2017年浙江省舟山市中考数学试卷 ‎ ‎ 一、选择题:‎ ‎1.(3分)﹣2的绝对值是(  )‎ A.2 B.﹣2 C. D.‎ ‎2.(3分)长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是(  )‎ A.4 B.5 C.6 D.9‎ ‎3.(3分)已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是(  )‎ A.3,2 B.3,4 C.5,2 D.5,4‎ ‎4.(3分)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是(  )‎ A.中 B.考 C.顺 D.利 ‎5.(3分)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是(  )‎ A.红红不是胜就是输,所以红红胜的概率为 B.红红胜或娜娜胜的概率相等 C.两人出相同手势的概率为 D.娜娜胜的概率和两人出相同手势的概率一样 ‎6.(3分)若二元一次方程组的解为,则a﹣b=(  )‎ A.1 B.3 C. D.‎ ‎7.(3分)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是(  )‎ A.向左平移1个单位,再向下平移1个单位 B.向左平移个单位,再向上平移1个单位 C.向右平移个单位,再向上平移1个单位 D.向右平移1个单位,再向上平移1个单位 ‎8.(3分)用配方法解方程x2+2x﹣1=0时,配方结果正确的是(  )‎ A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=3‎ ‎9.(3分)一张矩形纸片ABCD,已知AB=3,AD=2,小明按如图步骤折叠纸片,则线段DG长为(  )‎ A. B. C.1 D.2‎ ‎10.(3分)下列关于函数y=x2﹣6x+10的四个命题:‎ ‎①当x=0时,y有最小值10;‎ ‎②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;‎ ‎③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;‎ ‎④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.‎ 其中真命题的序号是(  )‎ A.① B.② C.③ D.④‎ ‎ ‎ 二、填空题 ‎11.(4分)分解因式:ab﹣b2=   .‎ ‎12.(4分)若分式的值为0,则x的值为   .‎ ‎13.(4分)如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,=90°,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为   .‎ ‎14.(4分)七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,则投进球数的众数是   .‎ ‎15.(4分)如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C=   ,…按此规律,写出tan∠BAnC=   (用含n的代数式表示).‎ ‎16.(4分)一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是   .现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H相应移动的路径长共为   .(结果保留根号)‎ ‎ ‎ 三、解答题 ‎17.(6分)(1)计算:()2﹣2﹣1×(﹣4);‎ ‎(2)化简:(m+2)(m﹣2)﹣×3m.‎ ‎18.(6分)小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.‎ ‎19.(6分)如图,已知△ABC,∠B=40°.‎ ‎(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);‎ ‎(2)连接EF,DF,求∠EFD的度数.‎ ‎20.(8分)如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠‎ ‎0)的图象交于点A(﹣1,2),B(m,﹣1).‎ ‎(1)求这两个函数的表达式;‎ ‎(2)在x轴上是否存在点P(n,0)(n>0),使△ABP为等腰三角形?若存在,求n的值;若不存在,说明理由.‎ ‎21.(8分)小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.‎ 根据统计图,回答下面的问题:‎ ‎(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?‎ ‎(2)请简单描述月用电量与气温之间的关系;‎ ‎(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.‎ ‎22.(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).‎ ‎(1)此时小强头部E点与地面DK相距多少?‎ ‎(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?‎ ‎(sin80°≈0.98,cos80°≈0.18,≈1.41,结果精确到0.1)‎ ‎23.(10分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.‎ ‎(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;‎ ‎(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.‎ ‎(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.‎ ‎①求∠CAM的度数;‎ ‎②当FH=,DM=4时,求DH的长.‎ ‎24.(12分)如图,某日的钱塘江观测信息如下:‎ 按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示.其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数:s=t2+bt+c(b,c是常数)刻画.‎ ‎(1)求m值,并求出潮头从甲地到乙地的速度;‎ ‎(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟与潮头相遇?‎ ‎(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t﹣30),v0是加速前的速度).‎ ‎ ‎ ‎2017年浙江省舟山市中考数学试卷 参考答案与试题解析 ‎ ‎ 一、选择题:‎ ‎1.(3分)(2017•随州)﹣2的绝对值是(  )‎ A.2 B.﹣2 C. D.‎ ‎【解答】解:﹣2的绝对值是2,‎ 即|﹣2|=2.‎ 故选:A.‎ ‎ ‎ ‎2.(3分)(2017•舟山)长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是(  )‎ A.4 B.5 C.6 D.9‎ ‎【解答】解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9.‎ 因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.‎ ‎4,5,9都不符合不等式5<x<9,只有6符合不等式,‎ 故选:C.‎ ‎ ‎ ‎3.(3分)(2017•舟山)已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是(  )‎ A.3,2 B.3,4 C.5,2 D.5,4‎ ‎【解答】解:∵数据a,b,c的平均数为5,‎ ‎∴(a+b+c)=5,‎ ‎∴(a﹣2+b﹣2+c﹣2)=(a+b+c)﹣2=5﹣2=3,‎ ‎∴数据a﹣2,b﹣2,c﹣2的平均数是3;‎ ‎∵数据a,b,c的方差为4,‎ ‎∴[(a﹣5)2+(b﹣5)2+(c﹣5)2]=4,‎ ‎∴a﹣2,b﹣2,c﹣2的方差=[(a﹣2﹣3)2+(b﹣2﹣3)2+(c﹣﹣2﹣3)2]=[(a﹣5)2+(b﹣5)2+(c﹣5)2]=4.‎ 故选B.‎ ‎ ‎ ‎4.(3分)(2017•舟山)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是(  )‎ A.中 B.考 C.顺 D.利 ‎【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,‎ ‎“祝”与“考”是相对面,‎ ‎“你”与“顺”是相对面,‎ ‎“中”与“立”是相对面.‎ 故选C.‎ ‎ ‎ ‎5.(3分)(2017•舟山)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是(  )‎ A.红红不是胜就是输,所以红红胜的概率为 B.红红胜或娜娜胜的概率相等 C.两人出相同手势的概率为 D.娜娜胜的概率和两人出相同手势的概率一样 ‎【解答】解:红红和娜娜玩“锤子、剪刀、布”游戏,所有可能出现的结果列表如下:‎ ‎ 红红 娜娜 锤子 剪刀 布 锤子 ‎(锤子,锤子)‎ ‎(锤子,剪刀)‎ ‎(锤子,布)‎ 剪刀 ‎(剪刀,锤子)‎ ‎(剪刀,剪刀)‎ ‎(剪刀,布)‎ 布 ‎(布,锤子)‎ ‎(布,剪刀)‎ ‎(布,布)‎ 由表格可知,共有9种等可能情况.其中平局的有3种:(锤子,锤子)、(剪刀,剪刀)、(布,布).‎ 因此,红红和娜娜两人出相同手势的概率为,两人获胜的概率都为,‎ 红红不是胜就是输,所以红红胜的概率为,错误,故选项A符合题意,‎ 故选项B,C,D不合题意;‎ 故选:A.‎ ‎ ‎ ‎6.(3分)(2017•舟山)若二元一次方程组的解为,则a﹣b=(  )‎ A.1 B.3 C. D.‎ ‎【解答】解:∵x+y=3,3x﹣5y=4,‎ ‎∴两式相加可得:(x+y)+(3x﹣5y)=3+4,‎ ‎∴4x﹣4y=7,‎ ‎∴x﹣y=,‎ ‎∵x=a,y=b,‎ ‎∴a﹣b=x﹣y=‎ 故选(D)‎ ‎ ‎ ‎7.(3分)(2017•舟山)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是(  )‎ A.向左平移1个单位,再向下平移1个单位 B.向左平移个单位,再向上平移1个单位 C.向右平移个单位,再向上平移1个单位 D.向右平移1个单位,再向上平移1个单位 ‎【解答】解:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形,‎ 过B作BH⊥x轴于H,‎ ‎∵B(1,1),‎ ‎∴OB==,‎ ‎∵A(,0),‎ ‎∴C(1+,1)‎ ‎∴OA=OB,‎ ‎∴则四边形OACB是菱形,‎ ‎∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,‎ 故选D.‎ ‎ ‎ ‎8.(3分)(2017•舟山)用配方法解方程x2+‎ ‎2x﹣1=0时,配方结果正确的是(  )‎ A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=3‎ ‎【解答】解:∵x2+2x﹣1=0,‎ ‎∴x2+2x+1=2,‎ ‎∴(x+1)2=2.‎ 故选:B.‎ ‎ ‎ ‎9.(3分)(2017•舟山)一张矩形纸片ABCD,已知AB=3,AD=2,小明按如图步骤折叠纸片,则线段DG长为(  )‎ A. B. C.1 D.2‎ ‎【解答】解:∵AB=3,AD=2,‎ ‎∴DA′=2,CA′=1,‎ ‎∴DC′=1,‎ ‎∵∠D=45°,‎ ‎∴DG=DC′=,‎ 故选A.‎ ‎ ‎ ‎10.(3分)(2017•舟山)下列关于函数y=x2﹣6x+10的四个命题:‎ ‎①当x=0时,y有最小值10;‎ ‎②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;‎ ‎③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;‎ ‎④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.‎ 其中真命题的序号是(  )‎ A.① B.② C.③ D.④‎ ‎【解答】解:∵y=x2﹣6x+10=(x﹣3)2+1,‎ ‎∴当x=3时,y有最小值1,故①错误;‎ 当x=3+n时,y=(3+n)2﹣6(3+n)+10,‎ 当x=3﹣n时,y=(n﹣3)2﹣6(n﹣3)+10,‎ ‎∵(3+n)2﹣6(3+n)+10﹣[(n﹣3)2﹣6(n﹣3)+10]=0,‎ ‎∴n为任意实数,x=3+n时的函数值等于x=3﹣n时的函数值,故②错误;‎ ‎∵抛物线y=x2﹣6x+10的对称轴为x=3,a=1>0,‎ ‎∴当x>3时,y随x的增大而增大,‎ 当x=n+1时,y=(n+1)2﹣6(n+1)+10,‎ 当x=n时,y=n2﹣6n+10,‎ ‎(n+1)2﹣6(n+1)+10﹣[n2﹣6n+10]=2n﹣4,‎ ‎∵n是整数,‎ ‎∴2n﹣4是整数,故③正确;‎ ‎∵抛物线y=x2﹣6x+10的对称轴为x=3,1>0,‎ ‎∴当x>3时,y随x的增大而增大,x<0时,y随x的增大而减小,‎ ‎∵y0+1>y0,∴当0<a<3,0<b<3时,a>b,当a>3,b>3时,a<b,当0<a<3,b>3时,a<b,当0<a<3,b>3时,a<b,故④是假命题.故选C.‎ ‎ ‎ 二、填空题 ‎11.(4分)(2017•淮安)分解因式:ab﹣b2= b(a﹣b) .‎ ‎【解答】解:原式=b(a﹣b),‎ 故答案为:b(a﹣b).‎ ‎ ‎ ‎12.(4分)(2017•舟山)若分式的值为0,则x的值为 2 .‎ ‎【解答】解:由分式的值为零的条件得,‎ 由2x﹣4=0,得x=2,‎ 由x+1≠0,得x≠﹣1.‎ 综上,得x=2,即x的值为2.‎ 故答案为:2.‎ ‎ ‎ ‎13.(4分)(2017•舟山)如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,=90°,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为 (32+48π)cm2 .‎ ‎【解答】解:连接OA、OB,‎ ‎∵=90°,‎ ‎∴∠AOB=90°,‎ ‎∴S△AOB=×8×8=32,‎ 扇形ACB(阴影部分)==48π,‎ 则弓形ACB胶皮面积为(32+48π)cm2,‎ 故答案为:(32+48π)cm2.‎ ‎ ‎ ‎14.(4分)(2017•舟山)七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,则投进球数的众数是 3球 .‎ ‎【解答】解:∵由图可知,3球所占的比例最大,‎ ‎∴投进球数的众数是3球.‎ 故答案为:3球.‎ ‎ ‎ ‎15.(4分)(2017•舟山)如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C=  ,…按此规律,写出tan∠BAnC=  (用含n的代数式表示).‎ ‎【解答】解:作CH⊥BA4于H,‎ 由勾股定理得,BA4==,A4C=,‎ ‎△BA4C的面积=4﹣2﹣=,‎ ‎∴××CH=,‎ 解得,CH=,‎ 则A4H==,‎ ‎∴tan∠BA4C==,‎ ‎1=12﹣1+1,‎ ‎3=22﹣2+1,‎ ‎7=32﹣3+1,‎ ‎∴tan∠BAnC=,‎ 故答案为:;.‎ ‎ ‎ ‎16.(4分)(2017•舟山)一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是 12﹣12 .现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H相应移动的路径长共为 12﹣18 .(结果保留根号)‎ ‎【解答】解:如图1中,作HM⊥BC于M,HN⊥AC于N,则四边形HMCN是正方形,设边长为a.‎ 在Rt△ABC中,∵∠ABC=30°,BC=12,‎ ‎∴AB==8,‎ 在Rt△BHM中,BH=2HM=2a,‎ 在Rt△AHN中,AH==a,‎ ‎∴2a+=8,‎ ‎∴a=6﹣6,‎ ‎∴BH=2a=12﹣12.‎ 如图2中,当DG∥AB时,易证GH1⊥DF,此时BH1的值最小,易知BH1=BK+KH1=3+3,‎ ‎∴HH1=BH﹣BH1=9﹣15,‎ 当旋转角为60°时,F与H2重合,易知BH2=6,‎ 观察图象可知,在∠CGF从0°到60°的变化过程中,点H相应移动的路径长=2HH1+HH2=18﹣30+[6﹣(12﹣12)]=12﹣18.‎ 故答案分别为12﹣12,12﹣18.‎ ‎ ‎ 三、解答题 ‎17.(6分)(2017•舟山)(1)计算:()2﹣2﹣1×(﹣4);‎ ‎(2)化简:(m+2)(m﹣2)﹣×3m.‎ ‎【解答】解:(1)原式=3﹣×(﹣4)=3+2=5;‎ ‎(2)原式=m2﹣4﹣m2=﹣4.‎ ‎ ‎ ‎18.(6分)(2017•舟山)小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.‎ ‎【解答】解:错误的是①②⑤,正确解答过程如下:‎ 去分母,得3(1+x)﹣2(2x+1)≤6,‎ 去括号,得3+3x﹣4x﹣2≤6,‎ 移项,得3x﹣4x≤6﹣3+2,‎ 合并同类项,得﹣x≤5,‎ 两边都除以﹣1,得x≥﹣5.‎ ‎ ‎ ‎19.(6分)(2017•舟山)如图,已知△ABC,∠B=40°.‎ ‎(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);‎ ‎(2)连接EF,DF,求∠EFD的度数.‎ ‎【解答】解:(1)如图1,‎ ‎⊙O即为所求.‎ ‎(2)如图2,‎ 连接OD,OE,‎ ‎∴OD⊥AB,OE⊥BC,‎ ‎∴∠ODB=∠OEB=90°,‎ ‎∵∠B=40°,‎ ‎∴∠DOE=140°,‎ ‎∴∠EFD=70°.‎ ‎ ‎ ‎20.(8分)(2017•舟山)如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1).‎ ‎(1)求这两个函数的表达式;‎ ‎(2)在x轴上是否存在点P(n,0)(n>0),使△ABP为等腰三角形?若存在,求n的值;若不存在,说明理由.‎ ‎【解答】解:(1)把A(﹣1,2)代入y=,得到k2=﹣2,‎ ‎∴反比例函数的解析式为y=﹣.‎ ‎∵B(m,﹣1)在Y=﹣上,‎ ‎∴m=2,‎ 由题意,解得,‎ ‎∴一次函数的解析式为y=﹣x+1.‎ ‎(2)∵A(﹣1,2),B(2,﹣1),‎ ‎∴AB=3,‎ ‎①当PA=PB时,(n+1)2+4=(n﹣2)2+1,‎ ‎∴n=0,‎ ‎∵n>0,‎ ‎∴n=0不合题意舍弃.‎ ‎②当AP=AB时,22+(n+1)2=(3)2,‎ ‎∵n>0,‎ ‎∴n=﹣1+.‎ ‎③当BP=BA时,12+(n﹣2)2=(3)2,‎ ‎∵n>0,‎ ‎∴n=2+.‎ 综上所述,n=﹣1+或2+.‎ ‎ ‎ ‎21.(8分)(2017•舟山)小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.‎ 根据统计图,回答下面的问题:‎ ‎(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?‎ ‎(2)请简单描述月用电量与气温之间的关系;‎ ‎(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.‎ ‎【解答】解:‎ ‎(1)由统计图可知:月平均气温最高值为30.6℃,最低气温为5.8℃;‎ 相应月份的用电量分别为124千瓦时和110千瓦时.‎ ‎(2)当气温较高或较低时,用电量较多;当气温适宜时,用电量较少;‎ ‎(3)能,因为中位数刻画了中间水平.‎ ‎ ‎ ‎22.(10分)(2017•舟山)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).‎ ‎(1)此时小强头部E点与地面DK相距多少?‎ ‎(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?‎ ‎(sin80°≈0.98,cos80°≈0.18,≈1.41,结果精确到0.1)‎ ‎【解答】解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.‎ ‎∵EF+FG=166,FG=100,‎ ‎∴EF=66,‎ ‎∵∠FK=80°,‎ ‎∴FN=100•sin80°≈98,‎ ‎∵∠EFG=125°,‎ ‎∴∠EFM=180°﹣125°﹣10°=45°,‎ ‎∴FM=66•cos45°=33≈46.53,‎ ‎∴MN=FN+FM≈114.5,‎ ‎∴此时小强头部E点与地面DK相距约为144.5cm.‎ ‎(2)过点E作EP⊥AB于点P,延长OB交MN于H.‎ ‎∵AB=48,O为AB中点,‎ ‎∴AO=BO=24,‎ ‎∵EM=66•sin45°≈46.53,‎ ‎∴PH≈46.53,‎ ‎∵GN=100•cos80°≈18,CG=15,‎ ‎∴OH=24+15+18=57,OP=OH﹣PH=57﹣46.53=10.47≈10.5,‎ ‎∴他应向前10.5cm.‎ ‎ ‎ ‎23.(10分)(2017•舟山)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.‎ ‎(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;‎ ‎(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.‎ ‎(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.‎ ‎①求∠CAM的度数;‎ ‎②当FH=,DM=4时,求DH的长.‎ ‎【解答】(1)证明:如图1中,‎ ‎∵DE∥AB,‎ ‎∴∠EDC=∠ABM,‎ ‎∵CE∥AM,‎ ‎∴∠ECD=∠ADB,‎ ‎∵AM是△ABC的中线,且D与M重合,‎ ‎∴BD=DC,‎ ‎∴△ABD≌△EDC,‎ ‎∴AB=ED,∵AB∥ED,‎ ‎∴四边形ABDE是平行四边形.‎ ‎(2)结论:成立.理由如下:‎ 如图2中,过点M作MG∥DE交CE于G.‎ ‎∵CE∥AM,‎ ‎∴四边形DMGE是平行四边形,‎ ‎∴ED=GM,且ED∥GM,‎ 由(1)可知AB=GM,AB∥GM,‎ ‎∴AB∥DE,AB=DE,‎ ‎∴四边形ABDE是平行四边形.‎ ‎(3)①如图3中,取线段HC的中点I,连接MI,‎ ‎∵BM=MC,‎ ‎∴MI是△BHC的中位线,‎ ‎∴∥BH,MI=BH,‎ ‎∵BH⊥AC,且BH=AM.‎ ‎∴MI=AM,MI⊥AC,‎ ‎∴∠CAM=30°.‎ ‎②设DH=x,则AH=x,AD=2x,‎ ‎∴AM=4+2x,‎ ‎∴BH=4+2x,‎ ‎∵四边形ABDE是平行四边形,‎ ‎∴DF∥AB,‎ ‎∴=,‎ ‎∴=,‎ 解得x=1+或1﹣(舍弃),‎ ‎∴DH=1+.‎ ‎ ‎ ‎24.(12分)(2017•舟山)如图,某日的钱塘江观测信息如下:‎ 按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示.其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数:s=t2+bt+c(b,c是常数)刻画.‎ ‎(1)求m值,并求出潮头从甲地到乙地的速度;‎ ‎(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟与潮头相遇?‎ ‎(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t﹣30),v0是加速前的速度).‎ ‎【解答】解:(1)12时10分﹣11时40分=30分,‎ ‎12÷30=0.4(千米/分).‎ 答:m的值为30,‎ ‎∴m的值为30.潮头从甲地到乙地的速度为0.4千米/分.‎ ‎(2)0.4×(30+40﹣59)=4.4(千米),‎ ‎4.4÷(0.4+0.48)=5(分钟).‎ 答:小红出发五分钟后与潮头相遇.‎ ‎(3)将B(30,0)、C(55,15)代入s=t2+bt+c中,‎ 得:,解得:,‎ ‎∴曲线BC的函数关系式为s=t2﹣t﹣.‎ 令0.4+(t﹣30)=0.48,解得:t=35,‎ 当t=35时,s=t2﹣t﹣=2.2.‎ 根据题意得:t2﹣t﹣﹣0.48(t﹣35)﹣2.2=1.8,‎ 整理得:t2﹣70t+1000=0,‎ 解得:t=50或t=20(不合题意,舍去),‎ ‎∵50﹣30+5=25(分钟),‎ ‎∴小红与潮头相遇到落后潮头1.8千米共需25分钟.‎ ‎ ‎ 参与本试卷答题和审题的老师有:星期八;HJJ;CJX;dbz1018;sd2011;神龙杉;王学峰;放飞梦想;733599;2300680618;知足长乐;ZJX;弯弯的小河;zhjh;曹先生;星月相随;wd1899(排名不分先后)‎ 菁优网 ‎2017年7月6日
查看更多

相关文章

您可能关注的文档