九年级下册数学同步练习1-5 第2课时 二次函数与利润问题及几何问题 湘教版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

九年级下册数学同步练习1-5 第2课时 二次函数与利润问题及几何问题 湘教版

第2课时 二次函数与利润问题及几何问题 ‎1、某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价。若每件商品的售价为x元,则可卖处(350-10x)件商品。商品所获得的利润y元与售价x的函数关系为( )‎ A、 B、‎ C、 D、‎ ‎2、某产品的进货价格为90元,按100元一个售出时,能售500个,如果这种商品每涨价1元,其销售量就减少10个,为了获得最大利润,其定价应定为( )[来源:学_科_网]‎ A、130元 B、120元 C、110元 D、100元 ‎3.如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上,设AB=xm,长方形的面积为ym2,要使长方形的面积最大,其边长x应为( D )‎ ‎ ‎ A. B.6m C.25m D.‎ ‎4.在底边长BC=20cm,高AM=12cm的三角形铁板ABC上,要截一块矩形铁板EFGH,如图所示.当矩形的边EF= cm时,矩形铁板的面积最大,其最大面积为  cm².[来源:学.科.网Z.X.X.K]‎ ‎5.已知卖出盒饭的盒数x(盒)与所获利润y(元)满足关系式:,则卖出盒饭数量为 盒时,获得最大利润为 元。‎ ‎6.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过 秒,四边形APQC的面积最小.‎ ‎[来源:学科网]‎ ‎7.某旅馆有30个房间供旅客住宿。据测算,若每个房间的定价为60元/天,房间将会住满;若每个房间的定价每增加5元/天,就会有一个房间空闲。该旅馆对旅客住宿的房间每间要支出各种费用20元/天(没住宿的不支出)。当房价定为每天多少时,该旅馆的利润最大?‎ ‎8.张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三 边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形 ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.‎ ‎ (1)求S与x之间的函数关系式(不要求写出自变量x的取值范围)‎ ‎ (2)当x为何值时,S有最大值?并求出最大值.‎ ‎ ‎ ‎ ‎ ‎9.最近,某市出台了一系列“三农”优惠政策,使农民收入大幅度增加。某农户生产经销一种农副产品,已知这种产品的成本价为20元每千克。经市场调查发现,该产品每天的销售量w(千克)与销售量x(元)有如下的关系:w=-2x+80。设这种产品每天的销售利润为y(元)。‎ ‎(1)求y与x之间的函数关系式;‎ ‎(2)当销售价定为多少元每千克时,每天的销售利润最大?最大利润是多少?‎ ‎(3)如果物价部门规定这种产品的销售价不得高于28元每千克,该农户想要每天获得150元的销售利润,销售价应定为多少?‎ ‎[来源:学科网ZXXK]‎ ‎[来源:Zxxk.Com]‎ ‎10.与某雪糕厂由于季节性因素,一年之中产品销售有淡季和旺季,当某月产品无利润时就停产。经调查分析,该厂每月获得的利润y(万元)和月份x之间满足函数关系式,已知3月份、4月份的利润分别是9万元、16万元。问 ‎(1)该厂每月获得的利润y(万元)和月份x之间的函数关系式;‎ ‎(2)该厂在第几个月份获得最大利润?最大利润为多少?‎ ‎(3)该厂一年中应停产的是哪几个月份?通过计算说明。‎ ‎11.如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0). (1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;‎ ‎(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由; (3)当t为何值时,△MNA是一个等腰三角形?‎ ‎12.某技术开发公司研制出一种新型产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买这种新型产品,公司决定商家一次性购买这种新型产品不超过10件时,每件按3000元销售;若一次性购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元。‎ ‎(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?[来源:Z,xx,k.Com]‎ ‎(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(元)之间的函数关系式,并写出自变量的取值范围;‎ ‎(3)该公司的销售人员发现:当商家一次性购买产品的件数超过某一数量时,,会出现随着一次购买数量的增多,公司所获的利润反而减少这一情况。为使商家一次购买的数量越来越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其他销售条件不变)‎ ‎[来源:学科网]‎ ‎13.在长株潭建设两型社会的过程中。为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备 ,进行该产品的生产加工。已知生产这种产品的成本价为每件20元。经过市场调查发现,该产品的销售单价定为25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:。(年获利=年销售收入-生产成本-投资成本)‎ ‎(1)当销售单价定为28元时,该产品的年销售量为多少万件?‎ ‎(2)求该公司第一年的年获利W(万元)与销售单价x(件)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?‎ ‎(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分是10万元的固定捐款;另一部分则是每销售一件产品,就抽出一元作为捐款。若出去第一年的最大获利(或是最小亏损)以及第二年的捐款后,到第二年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的单位.‎
查看更多

相关文章

您可能关注的文档