- 2021-07-01 发布 |
- 37.5 KB |
- 27页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
专题37 基本不等式及其应用-2020年领军高考数学一轮复习(文理通用) Word版含解析
专题37基本不等式及其应用 最新考纲 1.了解基本不等式的证明过程. 2.会用基本不等式解决简单的最大(小)值问题. 基础知识融会贯通 1.基本不等式:≤ (1)基本不等式成立的条件:a>0,b>0. (2)等号成立的条件:当且仅当a=b时取等号. 2.几个重要的不等式 (1)a2+b2≥2ab(a,b∈R). (2)+≥2(a,b同号). (3)ab≤2 (a,b∈R). (4)≥2 (a,b∈R). 以上不等式等号成立的条件均为a=b. 3.算术平均数与几何平均数 设a>0,b>0,则a,b的算术平均数为,几何平均数为,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x>0,y>0,则 (1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值2.(简记:积定和最小) (2)如果和x+y是定值p,那么当且仅当x=y时,xy有最大值.(简记:和定积最大) 【知识拓展】 不等式的恒成立、能成立、恰成立问题 (1)恒成立问题:若f(x)在区间D上存在最小值,则不等式f(x)>A在区间D上恒成立⇔f(x)min>A(x∈D); 若f(x)在区间D上存在最大值,则不等式f(x)A成立⇔f(x)max>A(x∈D); 若f(x)在区间D上存在最小值,则在区间D上存在实数x使不等式f(x)A恰在区间D上成立⇔f(x)>A的解集为D; 不等式f(x)查看更多
相关文章
- 当前文档收益归属上传用户