高考数学二轮讲座:函数问题的题型与方法

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考数学二轮讲座:函数问题的题型与方法

‎ ‎ 函数问题的题型与方法 三、函数的概念 函数有二种定义,一是变量观点下的定义,一是映射观点下的定义.复习中不能仅满足对这两种定义的背诵,而应在判断是否构成函数关系,两个函数关系是否相同等问题中得到深化,更应在有关反函数问题中正确运用.具体要求是:‎ ‎1.深化对函数概念的理解,明确函数三要素的作用,并能以此为指导正确理解函数与其反函数的关系.‎ ‎2.系统归纳求函数定义域、值域、解析式、反函数的基本方法.在熟练有关技能的同时,注意对换元、待定系数法等数学思想方法的运用.‎ ‎3.通过对分段定义函数,复合函数,抽象函数等的认识,进一步体会函数关系的本质,进一步树立运动变化,相互联系、制约的函数思想,为函数思想的广泛运用打好基础.‎ 本部分的难点首先在于克服“函数就是解析式”的片面认识,真正明确不仅函数的对应法则,而且其定义域都包含着对函数关系的制约作用,并真正以此作为处理问题的指导.其次在于确定函数三要素、求反函数等课题的综合性,不仅要用到解方程,解不等式等知识,还要用到换元思想、方程思想等与函数有关概念的结合.‎ Ⅰ 深化对函数概念的认识 例1.下列函数中,不存在反函数的是          ( )‎ ‎ ‎ 分析:处理本题有多种思路.分别求所给各函数的反函数,看是否存在是不好的,因为过程太繁琐.‎ 从概念看,这里应判断对于给出函数值域内的任意值,依据相应的对应法则,是否在其定义域内都只有惟一确定的值与之对应,因此可作出给定函数的图象,用数形结合法作判断,这是常用方法。‎ 此题作为选择题还可采用估算的方法.对于D,y=3是其值域内一个值,但若y=3,则可能x=2(2>1),也可能x=-1(-1≤-1).依据概念,则易得出D中函数不存在反函数.于是决定本题选D.‎ 说明:不论采取什么思路,理解和运用函数与其反函数的关系是这里解决问题的关键.‎ 由于函数三要素在函数概念中的重要地位,那么掌握确定函数三要素的基本方法当然成了函数概念复习中的重要课题.‎ 例1.(重庆市)函数的定义域是( D )‎ A、 B、 C、 D、‎ 例2.(天津市)函数()的反函数是( D )[来源:Zxxk.Com]‎ A、 B、‎ C、 D、‎ 也有个别小题的难度较大,如[来源:学科网]‎ 例3.(北京市)函数其中P、M为实数集R的两个非空子集,又规定 18‎ ‎ ‎ ‎,,给出下列四个判断:‎ ‎ ①若,则 ②若,则 ‎ ③若,则 ④若,则 ‎ 其中正确判断有( B )‎ ‎ A、 1个 B、 2个 C、 3个 D、 4个 分析:若,则只有这一种可能.②和④是正确的.‎ Ⅱ 系统小结确定函数三要素的基本类型与常用方法 ‎1.求函数定义域的基本类型和常用方法 由给定函数解析式求其定义域这类问题的代表,实际上是求使给定式有意义的x的取值范围.它依赖于对各种式的认识与解不等式技能的熟练.这里的最高层次要求是给出的解析式还含有其他字 例2.已知函数定义域为(0,2),求下列函数的定义域:‎ 分析:x的函数f(x)是由u=x与f(u)这两个函数复合而成的复合函数,其中x是自变量,u是中间变量.由于f(x),f(u)是同一个函数,故(1)为已知0<u<2,即0<x<2.求x的取值范围.‎ 解:(1)由0<x<2, 得 ‎ 说明:本例(1)是求函数定义域的第二种类型,即不给出f(x)的解析式,由f(x)的定义域求函数f[g(x)]的定义域.关键在于理解复合函数的意义,用好换元法.(2)是二种类型的综合.‎ 求函数定义域的第三种类型是一些数学问题或实际问题中产生的函数关系,求其定义域。‎ ‎2.求函数值域的基本类型和常用方法 函数的值域是由其对应法则和定义域共同决定的.其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域. ‎ ‎3.求函数解析式举例 18‎ ‎ ‎ 例3.已知xy<0,并且4x-9y=36.由此能否确定一个函数关系y=f(x)?如果能,求出其解析式、定义域和值域;如果不能,请说明理由.‎ 分析: 4x-9y=36在解析几何中表示双曲线的方程,仅此当然不能确定一个函数关系y=f(x),但加上条件xy<0呢?‎ 所以 因此能确定一个函数关系y=f(x).其定义域为(-∞,-3)∪(3,+∞).且不难得到其值域为(-∞,0)∪(0,+∞).‎ 说明:本例从某种程度上揭示了函数与解析几何中方程的内在联系.任何一个函数的解析式都可看作一个方程,在一定条件下,方程也可转化为表示函数的解析式.求函数解析式还有两类问题:‎ ‎(1)求常见函数的解析式.由于常见函数(一次函数,二次函数,幂函数,指数函数,对数函数,三角函数及反三角函数)的解析式的结构形式是确定的,故可用待定系数法确定其解析式.这里不再举例.‎ ‎(2)从生产、生活中产生的函数关系的确定.这要把有关学科知识,生活经验与函数概念结合起来,举例也宜放在函数复习的以后部分.‎ 四、函数的性质、图象 ‎ (一)函数的性质 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.‎ 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:‎ ‎1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.‎ ‎2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.‎ ‎3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.‎ 18‎ ‎ ‎ 这部分内容的重点是对函数单调性和奇偶性定义的深入理解.‎ 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.‎ 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.‎ 这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.‎ ‎1.对函数单调性和奇偶性定义的理解 例4.下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),其中正确命题的个数是   (    )[来源:学科网]‎ A.1       B.2 C.3       D.4‎ 分析:偶函数的图象关于y轴对称,但不一定相交,因此③正确,①错误.‎ 奇函数的图象关于原点对称,但不一定经过原点,因此②不正确.‎ 若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,如例1中的(3),故④错误,选A.‎ 说明:既奇又偶函数的充要条件是定义域关于原点对称且函数值恒为零.‎ ‎2.复合函数的性质 复合函数y=f[g(x)]是由函数u=g(x)和y=f(u)构成的,因变量y通过中间变量u与自变量x建立起函数关系,函数u=g(x)的值域是y=f(u)定义域的子集.‎ 复合函数的性质由构成它的函数性质所决定,具备如下规律:‎ ‎(1)单调性规律 如果函数u=g(x)在区间[m,n]上是单调函数,且函数y=f(u)在区间[g(m),g(n)] (或[g(n),g(m)])上也是单调函数,那么 若u=g(x),y=f(u)增减性相同,则复合函数y=f[g(x)]为增函数;若u=g(x),y= f(u)增减性不同,则y=f[g(x)]为减函数.‎ ‎(2)奇偶性规律 18‎ ‎ ‎ 若函数g(x),f(x),f[g(x)]的定义域都是关于原点对称的,则u=g(x),y=f(u)都是奇函数时,y=f[g(x)]是奇函数;u=g(x),y=f(u)都是偶函数,或者一奇一偶时,y= f[g(x)]是偶函数.‎ 例5.若y=log(2-ax)在[0,1]上是x的减函数,则a的取值范围是(  )‎ A.(0,1) B.(1,2) C.(0,2) D.[2,+∞)‎ 分析:本题存在多种解法,但不管哪种方法,都必须保证:①使log(2-ax)有意义,即a>0且a≠1,2-ax>0.②使log(2-ax)在[0,1]上是x的减函数.由于所给函数可分解为y=logu,u=2-ax,其中u=2-ax在a>0时为减函数,所以必须a>1;③[0,1]必须是y=log(2-ax)定义域的子集.‎ 解法一:因为f(x)在[0,1]上是x的减函数,所以f(0)>f(1),‎ 即log2>log(2-a).‎ 解法二:由对数概念显然有a>0且a≠1,因此u=2-ax在[0,1]上是减函数,y= logu应为增函数,得a>1,排除A,C,再令 故排除D,选B.‎ 说明:本题为1995年全国高考试题,综合了多个知识点,无论是用直接法,还是用排除法都需要概念清楚,推理正确.‎ ‎3.函数单调性与奇偶性的综合运用 例6.甲、乙两地相距Skm,汽车从甲地匀速行驶到乙地,速度不得超过c km/h,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(km/h)的平方成正比,比例系数为b;固定部分为a元.‎ ‎(1)把全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;‎ ‎(2)为了使全程运输成本最小,汽车应以多大速度行驶.‎ 分析:(1)难度不大,抓住关系式:全程运输成本=单位时间运输成本×全程运输时间,而全程运输时间=(全程距离)÷(平均速度)就可以解决.‎ 18‎ ‎ ‎ 故所求函数及其定义域为 但由于题设条件限制汽车行驶速度不超过ckm/h,所以(2)的解决需要 论函数的增减性来解决.[来源:学,科,网Z,X,X,K]‎ 由于vv>0,v-v>0,并且 18‎ ‎ ‎ 又S>0,所以即 则当v=c时,y取最小值.‎ ‎(二)函数的图象 ‎1.掌握描绘函数图象的两种基本方法——描点法和图象变换法.‎ ‎2.会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题.‎ ‎3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题.‎ ‎4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力.‎ 以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本节的重点.‎ 运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点.用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换.这也是个难点.‎ ‎1.作函数图象的一个基本方法 例7.作出下列函数的图象(1)y=|x-2|(x+1);(2)y=10|lgx|.‎ 分析:显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.‎ 解:(1)当x≥2时,即x-2≥0时,‎ 当x<2时,即x-2<0时,‎ 18‎ ‎ ‎ 这是分段函数,每段函数图象可根据二次函数图象作出(见图6)‎ ‎(2)当x≥1时,lgx≥0,y=10|lgx|=10lgx=x;‎ 当0<x<1时,lgx<0,‎ 所以 这是分段函数,每段函数可根据正比例函数或反比例函数作出.(见图7)‎ 说明:作不熟悉的函数图象,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意x,y的变化范围.因此必须熟记基本函数的图象.例如:一次函数、反比例函数、二次函数、指数函数、对数函数,及三角函数、反三角函数的图象.‎ 在变换函数解析式中运用了转化变换和分类讨论的思想.‎ ‎2.作函数图象的另一个基本方法——图象变换法.‎ 一个函数图象经过适当的变换(如平移、伸缩、对称、旋转等),得到另一个与之相关的图象,这就是函数的图象变换.‎ 在高中,主要学习了三种图象变换:平移变换、伸缩变换、对称变换.‎ ‎(1)平移变换[来源:Z§xx§k.Com]‎ 18‎ ‎ ‎ 函数y=f(x+a)(a≠0)的图象可以通过把函数y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位而得到;‎ 函数y=f(x)+b(b≠0)的图象可以通过把函数y=f(x)的图象向上(b>0)或向下(b<0)平移|b|个单位而得到.‎ ‎(2)伸缩变换 函数y=Af(x)(A>0,A≠1)的图象可以通过把函数y=f(x)的图象上各点的纵坐标伸长(A>1)或缩短(0<A<1)成原来的A倍,横坐标不变而得到.‎ 函数y=f(ωx)(ω>0,ω≠1)的图象可以通过把函数y=f(x)的图象上 而得到.‎ ‎(3)对称变换 函数y=-f(x)的图象可以通过作函数y=f(x)的图象关于x轴对称的图形而得到.‎ 函数y=f(-x)的图象可以通过作函数y=f(x)的图象关于y轴对称的图形而得到.‎ 函数y=-f(-x)的图象可以通过作函数y=f(x)的图象关于原点对称的图形而得到.‎ 函数y=f-1(x)的图象可以通过作函数y=f(x)的图象关于直线y=x对称的图形而得到。‎ 函数y=f(|x|)的图象可以通过作函数y=f(x)在y轴右方的图象及其与y轴对称的图形而得到.[来源:学科网ZXXK]‎ 函数y=|f(x)|的图象可以通过作函数y=f(x)的图象,然后把在x轴下方的图象以x轴为对称轴翻折到x轴上方,其余部分保持不变而得到.‎ 例8.已知f(x+199)=4x+4x+3(x∈R),那么函数f(x)的最小值为____.‎ 分析:由f(x+199)的解析式求f(x)的解析式运算量较大,但这里我们注意到,y=f(x +100)与y=f(x),其图象仅是左右平移关系,它们取得 求得f(x)的最小值即f(x+199)的最小值是2.‎ 说明:函数图象与函数性质本身在学习中也是密切联系的,是“互相利用”关系,函数图象在判断函数奇偶性、单调性、周期性及求最值等方面都有重要用途.‎ 五、函数综合应用 函数的综合复习是在系统复习函数有关知识的基础上进行函数的综合应用:‎ 18‎ ‎ ‎ ‎1.在应用中深化基础知识.在复习中基础知识经历一个由分散到系统,由单一到综合的发展过程.这个过程不是一次完成的,而是螺旋式上升的.因此要在应用深化基础知识的同时,使基础知识向深度和广度发展.‎ ‎2.以数学知识为载体突出数学思想方法.数学思想方法是观念性的东西,是解决数学问题的灵魂,同时它又离不开具体的数学知识.函数内容最重要的数学思想是函数思想和数形结合的思想.此外还应注意在解题中运用的分类讨论、换元等思想方法.解较综合的数学问题要进行一系列等价转化或非等价转化.因此本课题也十分重视转化的数学思想.‎ ‎3.重视综合运用知识分析问题解决问题的能力和推理论证能力的培养.函数是数学复习的开始,还不可能在大范围内综合运用知识.但从复习开始就让学生树立综合运用知识解决问题的意识是十分重要的.推理论证能力是学生的薄弱环节,近几年高考命题中加强对这方面的考查,尤其是对代数推理论证能力的考查是十分必要的.本课题在例题安排上作了这方面的考虑.‎ 具体要求是:‎ ‎1.在全面复习函数有关知识的基础上,进一步深刻理解函数的有关概念,全面把握各类函数的特征,提高运用基础知识解决问题的能力.[来源:学科网ZXXK]‎ ‎2.掌握初等数学研究函数的方法,提高研究函数的能力,重视数形结合数学思想方法的运用和推理论证能力的培养.‎ ‎3.初步沟通函数与方程、不等式及解析几何有关知识的横向联系,提高综合运用知识解决问题的能力.‎ ‎4.树立函数思想,使学生善于用运动变化的观点分析问题.‎ 本部分内容的重点是:通过对问题的讲解与分析,使学生能较好的调动函数的基础知识解决问题,并在解决问题中深化对基础知识的理解,深化对函数思想、数形结合思想的理解与运用.‎ 难点是:函数思想的理解与运用,推理论证能力、综合运用知识解决问题能力的培养与提高.‎ 函数的综合运用主要是指运用函数的知识、思想和方法综合解决问题.函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种刻画,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.因此,运动变化、相互联系、相互制约是函数思想的精髓,掌握有关函数知识是运用函数思想的前提,提高用初等数学思想方法研究函数的能力,树立运用函数思想解决有关数学问题的意识是运用函数思想的关键.‎ ‎1.准确理解、熟练运用,不断深化有关函数的基础知识 在中学阶段函数只限于定义在实数集合上的一元单值函数,其内容可分为两部分.第一部分是函数的概念和性质,这部分的重点是能从变量的观点和集合映射的观点理解函数及其有关概念,掌握描述函数性质的单调性、奇偶性、周期性等概念;第二部分是七类常见函数(一次函数、二次函数、指数函数、对数函数、三角函数和反三角函数)的图象和性质.第一部分是理论基础,第二部分是第一部分的运用与发展.‎ 例9.已知函数f(x),x∈F,那么集合{(x,y)|y=f(x),x∈F}∩{(x,y)|x=1}中所含元素的个数是.(    )‎ A.0 B.1 C.0或1 D.1或2‎ 分析:这里首先要识别集合语言,并能正确把集合语言转化成熟悉的语言.从函数观点看,问题是求函数y=f(x),x∈F的图象与直线x=1的交点个数(这是一次数到形的转化),不少学生常误认为交点是1个,并说这是根据函数定义中“惟一确定”的规定得到的,这是不正确的,因为函数是由定义域、值域、对应法则三要素组成的.这里给出了函数y=f(x)的定义域是F,但未明确给出1与F的关系,当1∈F时有1个交点,当1 F时没有交点,所以选C.‎ 18‎ ‎ ‎ ‎2.掌握研究函数的方法,提高研究函数问题的能力 高中数学对函数的研究理论性加强了,对一些典型问题的研究十分重视,如求函数的定义域,确定函数的解析式,判断函数的奇偶性,判断或证明函数在指定区间的单调性等,并形成了研究这些问题的初等方法,这些方法对分析问题能力,推理论证能力和综合运用数学知识能力的培养和发展是十分重要的.‎ 函数、方程、不等式是相互联系的.对于函数f(x)与g(x),令f(x)=g(x),f(x)>g(x)或f(x)<g(x)则分别构成方程和不等式,因此对于某些方程、不等式的问题用函数观点认识是十分有益的;方程、不等式从另一个侧面为研究函数提供了工具.‎ 例10.方程lgx+x=3的解所在区间为(    )‎ A.(0,1) B.(1,2)‎ C.(2,3) D.(3,+∞)‎ 分析:在同一平面直角坐标系中,画出函数y=lgx与y=-x+3的图象(如图2).它们的交点横坐标,显然在区间(1,3)内,由此可排除A,D.至于选B还是选C,由于画图精确性的限制,单凭直观就比较困难了.实际上这是要比较与2的大小.当x=2时,lgx=lg2,3-x=1.由于lg2<1,因此>2,从而判定∈(2,3),故本题应选C.‎ 说明:本题是通过构造函数用数形结合法求方程lgx+x=3解所在的区间.数形结合,要在结合方面下功夫.不仅要通过图象直观估计,而且还要计算的邻近两个函数值,通过比较其大小进行判断.‎ 例11.(1)一次函数f(x)=kx+h(k≠0),若m<n有f(m)>0,f(n)>0,则对于任意x∈(m,n)都有f(x)>0,试证明之;‎ ‎(2)试用上面结论证明下面的命题:‎ 若a,b,c∈R且|a|<1,|b|<1,|c|<1,则ab+bc+ca>-1.‎ 分析:问题(1)实质上是要证明,一次函数f(x)=kx+h(k≠0), x∈(m, n).若区间两个端点的函数值均为正,则对于任意x∈(m,n)都有f(x)>0.之所以具有上述性质是由于一次函数是单调的.因此本问题的证明要从函数单调性入手.‎ ‎(1)证明:‎ 当k>0时,函数f(x)=kx+h在x∈R上是增函数,m<x<n,f(x)>f(m)>0;‎ 当k<0时,函数f(x)=kx+h在x∈R上是减函数,m<x<n,f(x)>f(n)>0.‎ 所以对于任意x∈(m,n)都有f(x)>0成立.‎ ‎(2)将ab+bc+ca+1写成(b+c)a+bc+1,构造函数f(x)=(b+c)x+bc+1.则 f(a)=(b+c)a+bc+1.‎ 当b+c=0时,即b=-c, f(a)=bc+1=-c2+1.‎ 因为|c|<1,所以f(a)=-c2+1>0.‎ 当b+c≠0时,f(x)=(b+c)x+bc+1为x的一次函数.‎ 因为|b|<1,|c|<1,‎ f(1)=b+c+bc+1=(1+b)(1+c)>0, f(-1)=-b-c+bc+1=(1-b)(1-c)>0.‎ 由问题(1)对于|a|<1的一切值f(a)>0,即(b+c)a+bc+1=ab+ac+bc+1>0.‎ 说明:问题(2)的关键在于“转化”“构造”.把证明ab+bc+ca>-1转化为证明ab+bc+ca+1>0, 由于式子ab+bc+ca+1中, a,b,c是对称的,构造函数f(x)=(b+c)x+bc+1,则f(a)=(b+c)a+bc+1,问题转化为在|a|<1,|b|<1,|c|<1的条件下证明f(a)>0.(也可构造 f(x)=(a+c)x+ac+1,证明f(b)>0)。‎ 例12.定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y).‎ 18‎ ‎ ‎ ‎(1)求证f(x)为奇函数;‎ ‎(2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.‎ 分析:欲证f(x)为奇函数即要证对任意x都有f(-x)=-f(x)成立.在式子f(x+y)=f(x)+f(y)中,令y=-x可得f(0)=f(x)+f(-x)于是又提出新的问题,求f(0)的值.令x=y=0可得f(0)=f(0)+f(0)即f(0)=0,f(x)是奇函数得到证明.‎ ‎(1)证明:f(x+y)=f(x)+f(y)(x,y∈R),             ①‎ 令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.‎ 令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有 ‎0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数.‎ ‎(2)解:f(3)=log3>0,即f(3)>f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数.‎ f(k·3)<-f(3-9-2)=f(-3+9+2), k·3<-3+9+2,‎ ‎3-(1+k)·3+2>0对任意x∈R成立.‎ 令t=3>0,问题等价于t-(1+k)t+2>0对任意t>0恒成立.‎ R恒成立.‎ 说明:问题(2)的上述解法是根据函数的性质.f(x)是奇函数且在x∈R上是增函数,把问题转化成二次函数f(t)=t-(1+k)t+2对于任意t>0恒成立.对二次函数f(t)进行研究求解.本题还有更简捷的解法:‎ 分离系数由k·3<-3+9+2得[来源:学科网ZXXK]‎ 上述解法是将k分离出来,然后用平均值定理求解,简捷、新颖.‎ 六、强化训练[来源:学_科_网Z_X_X_K]‎ ‎1.对函数作代换x=g(t),则总不改变f(x)值域的代换是 ( ) A. B.‎ ‎ C.g(t)=(t-1)2 D.g(t)=cost ‎2.方程f(x,y)=0的曲线如图所示,那么方程f(2-x,y)=0的曲线是 ( )‎ 18‎ ‎ ‎ ‎ ‎ ‎3.已知命题p:函数的值域为R,命题q:函数 ‎ 是减函数。若p或q为真命题,p且q为假命题,则实数a的取值范围是 ‎ A.a≤1 B.a<2 C.1m(x-1)对满足|m|≤2的一切实数m的取值都成立。求x的取值范围。‎ ‎16. 设等差数列{a}的前n项的和为S,已知a=12,S>0,S<0 。‎ ‎①.求公差d的取值范围;‎ ‎②.指出S、S、…、S中哪一个值最大,并说明理由。‎ 18‎ ‎ ‎ ‎ P M A H B D C ‎17. 如图,AB是圆O的直径,PA垂直于圆O所在平面,C是圆周上任一点,设∠BAC=θ,PA=AB=2r,求异面直线PB和AC的距离。‎ ‎18. 已知△ABC三内角A、B、C的大小成等差数列,且tanA·tanC=2+,又知顶点C的对边c上的高等于4,求△ABC的三边a、b、c及三内角。‎ ‎19. 设f(x)=lg,如果当x∈(-∞,1]时f(x)有意义,求 实数a的取值范围。‎ ‎20.已知偶函数f(x)=cosqsinx-sin(x-q)+(tanq-2)sinx-sinq的最小值是0,求f(x)的最大值 及此时x的集合.‎ ‎21.已知,奇函数在上单调.‎ ‎(Ⅰ)求字母应满足的条件;[来源:学&科&网]‎ ‎(Ⅱ)设,且满足,求证:.‎ 七、参考答案 ‎1.不改变f(x)值域,即不能缩小原函数定义域。选项B,C,D均缩小了的定义域,故选A。‎ ‎2.先作出f(x,y)=0关于轴对称的函数的图象,即为函数f(-x,y)=0的图象,又 f(2-x,y)=0即为,即由f(-x,y)=0向右平移2个单位。故选C。‎ ‎3.命题p为真时,即真数部分能够取到大于零的所有实数,故二次函数的判别式,从而;命题q为真时,。‎ ‎ 若p或q为真命题,p且q为假命题,故p和q中只有一个是真命题,一个是假命题。‎ ‎ 若p为真,q为假时,无解;若p为假,q为真时,结果为10),则+=,解出x=2,再用万能公式,选A;‎ ‎8.利用是关于n的一次函数,设S=S=m,=x,则(,p)、(,q)、‎ ‎(x,p+q)在同一直线上,由两点斜率相等解得x=0,则答案:0;‎ ‎9.设cosx=t,t∈[-1,1],则a=t-t-1∈[-,1],所以答案:[-,1];‎ ‎10.设高h,由体积解出h=2,答案:24;‎ ‎11.设长x,则宽,造价y=4×120+4x×80+×80≥1760,答案:1760。‎ ‎12.运用条件知:=2,且 ‎==16‎ 18‎ ‎ ‎ ‎13.依题意可知,从而可知,所以有 ‎,又为正整数,取,则 ‎,所以,从而,所以,又,所以,因此有最小值为。‎ 下面可证时,,从而,所以, 又,所以,所以,综上可得:的最小值为11。‎ ‎14.分析:这是有关函数定义域、值域的问题,题目是逆向给出的,解好本题要运用复合函数,把f(x)分解为u=ax+2x+1和y=lgu 并结合其图象性质求解.‎ 切实数x恒成立. a=0或a<0不合题意,‎ 解得a>1.‎ 当a<0时不合题意; a=0时,u=2x+1,u能取遍一切正实数;‎ a>0时,其判别式Δ=22-4×a×1≥0,解得0<a≤1.‎ 所以当0≤a≤1时f(x)的值域是R.‎ ‎15.分析:此问题由于常见的思维定势,易把它看成关于x的不等式讨论。然而,若变换一个角度以m为变量,即关于m的一次不等式(x-1)m-(2x-1)<0在[-2,2]上恒成立的问题。对此的研究,设f(m)=(x-1)m-(2x-1),则问题转化为求一次函数(或常数函数)f(m)的值在[-2,2]内恒为负值时参数x应该满足的条件。‎ 解:问题可变成关于m的一次不等式:(x-1)m-(2x-1)<0在[-2,2] 恒成立,设f(m)=(x-1)m-(2x-1), 则 ‎ 解得x∈(,)‎ 说明 本题的关键是变换角度,以参数m作为自变量而构造函数式,不等式问题变成函数在闭区间上的值域问题。本题有别于关于x的不等式2x-1>m(x-1)的解集是[-2,2]时求m的值、关于x的不等式2x-1>m(x-1)在[-2,2]上恒成立时求m的范围。‎ 一般地,在一个含有多个变量的数学问题中,确定合适的变量和参数,从而揭示函数关系,使问题更明朗化。或者含有参数的函数中,将函数自变量作为参数,而参数作为函数,更具有灵活性,从而巧妙地解决有关问题。‎ 18‎ ‎ ‎ ‎16.分析: ①问利用公式a与S建立不等式,容易求解d的范围;②问利用S是n的二次函数,将S中哪一个值最大,变成求二次函数中n为何值时S取最大值的函数最值问题。‎ 解:① 由a=a+2d=12,得到a=12-2d,所以[来源:学科网]‎ S=12a+66d=12(12-2d)+66d=144+42d>0,‎ S=13a+78d=13(12-2d)+78d=156+52d<0。‎ ‎ 解得:-0、a<0 ,即:由d<0知道a>a>…>a,由S=13a<0得a<0,由S=6(a+a)>0得a>0。所以,在S、S、…、S中,S的值最大。‎ ‎17.分析:异面直线PB和AC的距离可看成求直线PB上任意一点到AC的距离的最小值,从而设定变量,建立目标函数而求函数最小值。‎ ‎ P M A H B D C 解:在PB上任取一点M,作MD⊥AC于D,MH⊥AB于H,‎ 设MH=x,则MH⊥平面ABC,AC⊥HD 。‎ ‎∴MD=x+[(2r-x)sinθ]=(sin+1)x-4rsinθx+4rsinθ=(sinθ+1)[x-]+‎ 即当x=时,MD取最小值为两异面直线的距离。‎ 说明:本题巧在将立体几何中“异面直线的距离”变成“求异面直线上两点之间距离的最小值”,并设立合适的变量将问题变成代数中的“函数问题”。一般地,对于求最大值、最小值的实际问题,先将文字说明转化成数学语言后,再建立数学模型和函数关系式,然后利用函数性质、重要不等式和有关知识进行解答。比如再现性题组第8题就是典型的例子。‎ ‎18.分析:已知了一个积式,考虑能否由其它已知得到一个和式,再用方程思想求解。‎ 解: 由A、B、C成等差数列,可得B=60°;‎ 由△ABC中tanA+tanB+tanC=tanA·tanB·tanC,得 tanA+tanC=tanB(tanA·tanC-1)= (1+)‎ 设tanA、tanC是方程x-(+3)x+2+=0的两根,解得x=1,x=2+‎ 设A0在x∈(-∞,1]上恒成立的不等式问题。‎ 解:由题设可知,不等式1+2+4a>0在x∈(-∞,1]上恒成立,‎ 即:()+()+a>0在x∈(-∞,1]上恒成立。‎ 设t=(), 则t≥, 又设g(t)=t+t+a,其对称轴为t=-‎ ‎∴ t+t+a=0在[,+∞)上无实根, 即 g()=()++a>0,得a>-‎ 所以a的取值范围是a>-。‎ 说明:对于不等式恒成立,引入新的参数化简了不等式后,构造二次函数利用函数的图像和单调性进行解决问题,其中也联系到了方程无解,体现了方程思想和函数思想。一般地,我们在解题中要抓住二次函数及图像、二次不等式、二次方程三者之间的紧密联系,将问题进行相互转化。‎ 在解决不等式()+()+a>0在x∈(-∞,1]上恒成立的问题时,也可使用“分离参数法”: 设t=(), t≥,则有a=-t-t∈(-∞,-],所以a的取值范围是a>-。其中最后得到a的范围,是利用了二次函数在某区间上值域的研究,也可属应用“函数思想”。‎ ‎20.解:f(x)=cosqsinx-(sinxcosq-cosxsinq)+(tanq-2)sinx-sinq ‎ =sinqcosx+(tanq-2)sinx-sinq 因为f(x)是偶函数,‎ 所以对任意xÎR,都有f(-x)=f(x),‎ 即sinqcos(-x)+(tanq-2)sin(-x)-sinq=sinqcosx+(tanq-2)sinx-sinq,‎ 即(tanq-2)sinx=0,‎ 所以tanq=2‎ 由 解得或 此时,f(x)=sinq(cosx-1).‎ 当sinq=时,f(x)=(cosx-1)最大值为0,不合题意最小值为0,舍去;‎ 18‎ ‎ ‎ 当sinq=时,f(x)=(cosx-1)最小值为0,‎ 当cosx=-1时,f(x)有最大值为,‎ 自变量x的集合为{x|x=2kp+p,kÎZ}.‎ ‎21.解:(1);., 若上是增函数,则恒成立,即 若上是减函数,则恒成立,这样的不存在. 综上可得:.‎ ‎(2)(证法一)设,由得,于是有,(1)-(2)得:,化简可得 ,,,故,即有.‎ ‎(证法二)假设,不妨设,由(1)可知在 上单调递增,故,‎ 这与已知矛盾,故原假设不成立,即有.‎ 18‎
查看更多

相关文章

您可能关注的文档