- 2021-07-01 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学专题复习教案: 直线与圆锥曲线的位置关系
直线与圆锥曲线的位置关系 主标题:直线与圆锥曲线的位置关系 副标题:为学生详细的分析直线与圆锥曲线的位置关系的高考考点、命题方向以及规律总结 关键词:直线与圆锥曲线的位置关系,知识总结 难度:5 重要程度:5 考点剖析:1.考查直线与圆锥曲线方程的联立,根与系数的关系,整体代入和设而不求的思想.2.通过研究直线与圆锥曲线的位置关系,考查圆锥曲线中的弦长、中点弦问题,最值与范围问题,定点与定值等问题.3.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向量等知识在解决问题中的综合应用. 命题方向:高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向量等知识在解决问题中的综合应用. 知识梳理:一、直线与圆锥曲线的位置关系的判断 将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0). 1.当a≠0,可考虑一元二次方程的判别式Δ,有 ①Δ>0⇔直线与圆锥曲线相交; ②Δ=0⇔直线与圆锥曲线相切; ③Δ<0⇔直线与圆锥曲线相离. 2.当a=0,b≠0时,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点, ①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行; ②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合. 二、圆锥曲线的弦长 设斜率为k(k≠0)的直线l与圆锥曲线C相交于A、B两点,A(x1,y1),B(x2,y2),则|AB|=|x2-x1|=|y2-y1|. 规律总结:1.涉及弦的中点与直线的斜率问题,可考虑“点差法”,构造出kAB=f(y1-y2,x1-x2)和x1+x2,y1+y2,整体代换,求出中点或斜率,体现“设而不求”的思想. 2.在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系; (3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围.查看更多