【数学】2020届天津一轮复习通用版1-1 集合的概念及运算作业

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2020届天津一轮复习通用版1-1 集合的概念及运算作业

专题一 集合与常用逻辑用语 ‎【真题典例】‎ ‎1.1 集合的概念及运算 挖命题 ‎【考情探究】‎ 考点 内容解读 ‎5年考情 预测热度 考题示例 考向 关联考点 ‎1.集合的含义与表示 ‎1.了解集合的含义,体会元素与集合的属于关系 ‎2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题 ‎2018课标Ⅱ,2‎ 集合中元素个数的判断 集合间的基本关系、集合的基本运算 ‎★☆☆‎ ‎2.集合间的基本关系 ‎1.理解集合之间包含与相等的含义,能识别给定集合的子集 ‎2.在具体情境中,了解全集与空集的含义 ‎2011北京,1‎ 集合间的基本关系 一元二次不等式的解法 ‎★☆☆‎ ‎3.集合的基本运算 ‎1.理解两个集合的并集与交集的含义,‎ ‎2018天津,1‎ ‎2018天津文,1‎ 集合的交、并、补运算 不等式和方程的解法 ‎★★★‎ 会求两个简单集合的并集与交集 ‎2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集 ‎3.能使用韦恩(Venn)图表示集合间的关系及运算 ‎2017天津,1‎ ‎2016天津,1‎ 分析解读  1.掌握集合的表示方法,能判断元素与集合的属于关系、集合与集合之间的包含关系.‎ ‎2.深刻理解、掌握交、并、补集的概念,熟练掌握集合的交、并、补的运算和性质,能用韦恩(Venn)图表示集合的关系及运算.‎ ‎3.本部分内容在高考试题中多以选择题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言为表现形式,考查数学思想方法.‎ ‎4.本节内容在高考中分值约为5分,属中低档题.‎ 破考点 ‎【考点集训】‎ 考点一 集合的含义与表示 ‎1.(2018课标Ⅱ,2,5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为(  )‎ A.9    B.8    C.5    D.4‎ 答案 A ‎ ‎2.(2012课标全国,1,5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为(  )‎ A.3    B.6    C.8    D.10‎ 答案 D ‎ 考点二 集合间的基本关系 ‎3.已知集合A={0,a},B={x|-12},则A∩B=(  )‎ A.{x|-32}    C.{x|21}    D.A∩B=⌀‎ 答案 A ‎ ‎3.(2017课标Ⅲ,1,5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为(  )‎ A.3    B.2    C.1    D.0‎ 答案 B ‎ ‎4.(2017课标Ⅱ,2,5分)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=(  )‎ A.{1,-3}    B.{1,0}    C.{1,3}    D.{1,5}‎ 答案 C ‎ ‎5.(2016课标Ⅰ,1,5分)设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=(  )‎ A.‎-3,-‎‎3‎‎2‎    B.‎-3,‎‎3‎‎2‎    C.‎1,‎‎3‎‎2‎    D.‎‎3‎‎2‎‎,3‎ 答案 D ‎ ‎6.(2016课标Ⅱ,2,5分)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=(  )‎ A.{1}    B.{1,2}    C.{0,1,2,3}    D.{-1,0,1,2,3}‎ 答案 C ‎ ‎7.(2015课标Ⅱ,1,5分)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=(  )‎ A.{-1,0}    B.{0,1}    C.{-1,0,1}    D.{0,1,2}‎ 答案 A ‎ ‎8.(2014课标Ⅱ,1,5分)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=(  )‎ A.{1}    B.{2}    C.{0,1}    D.{1,2}‎ 答案 D ‎ ‎9.(2014课标Ⅰ,1,5分)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=(  )‎ A.[-2,-1]    B.[-1,2)    C.[-1,1]    D.[1,2)‎ 答案 A ‎ ‎10.(2018北京,20,14分)设n为正整数,集合A={α|α=(t1,t2,…,tn),tk∈{0,1},k=1,2,…,n}.对于集合A中的任意元素α=(x1,x2,…,xn)和β=(y1,y2,…,yn),记 M(α,β)=‎1‎‎2‎[(x1+y1-|x1-y1|)+(x2+y2-|x2-y2|)+…+(xn+yn-|xn-yn|)].‎ ‎(1)当n=3时,若α=(1,1,0),β=(0,1,1),求M(α,α)和M(α,β)的值;‎ ‎(2)当n=4时,设B是A的子集,且满足:对于B中的任意元素α,β,当α,β相同时,M(α,β)是奇数;当α,β不同时,M(α,β)是偶数.求集合B中元素个数的最大值;‎ ‎(3)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素α,β,M(α,β)=0.写出一个集合B,使其元素个数最多,并说明理由.‎ 解析 (1)因为α=(1,1,0),β=(0,1,1),‎ 所以M(α,α)=‎1‎‎2‎[(1+1-|1-1|)+(1+1-|1-1|)+(0+0-|0-0|)]=2,‎ M(α,β)=‎1‎‎2‎[(1+0-|1-0|)+(1+1-|1-1|)+(0+1-|0-1|)]=1.‎ ‎(2)设α=(x1,x2,x3,x4)∈B,则M(α,α)=x1+x2+x3+x4.‎ 由题意知x1,x2,x3,x4∈{0,1},且M(α,α)为奇数,‎ 所以x1,x2,x3,x4中1的个数为1或3.所以 B⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.‎ 将上述集合中的元素分成如下四组:‎ ‎(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).‎ 经验证,对于每组中两个元素α,β,均有M(α,β)=1.‎ 所以每组中的两个元素不可能同时是集合B的元素.‎ 所以集合B中元素的个数不超过4.‎ 又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,‎ 所以集合B中元素个数的最大值为4.‎ ‎(3)设Sk={(x1,x2,…,xn)|(x1,x2,…,xn)∈A,xk=1,x1=x2=…=xk-1=0}(k=1,2,…,n),‎ Sn+1={(x1,x2,…,xn)|x1=x2=…=xn=0},‎ 所以A=S1∪S2∪…∪Sn+1.‎ 对于Sk(k=1,2,…,n-1)中的不同元素α,β,‎ 经验证,M(α,β)≥1.‎ 所以Sk(k=1,2,…,n-1)中的两个元素不可能同时是集合B的元素.‎ 所以B中元素的个数不超过n+1.‎ 取ek=(x1,x2,…,xn)∈Sk且xk+1=…=xn=0(k=1,2,…,n-1).‎ 令B={e1,e2,…,en-1}∪Sn∪Sn+1,则集合B的元素个数为n+1,且满足条件.‎ 故B是一个满足条件且元素个数最多的集合.‎ C组 教师专用题组 ‎1.(2018北京,1,5分)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=(  )‎ A.{0,1}    B.{-1,0,1}    C.{-2,0,1,2}    D.{-1,0,1,2}‎ 答案 A ‎ ‎2.(2017北京,1,5分)若集合A={x|-23},则A∩B=(  )‎ A.{x|-2
查看更多