2016年高考数学(文科)真题分类汇编K单元 概率

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2016年高考数学(文科)真题分类汇编K单元 概率

数 学 ‎ ‎ K单元 概率 ‎ K1 随事件的概率 ‎18.K1,K6,K8[2016·全国卷Ⅱ] 某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:‎ 上年度出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎≥5‎ 保费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:‎ 出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎≥5‎ 频数 ‎60‎ ‎50‎ ‎30‎ ‎30‎ ‎20‎ ‎10‎ ‎(1)记A为事件“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;‎ ‎(2)记B为事件“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;‎ ‎(3)求续保人本年度平均保费的估计值.‎ ‎18.解:(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.‎ ‎(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.‎ ‎(3)由所给数据得 保费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 频率 ‎0.30‎ ‎0.25‎ ‎0.15‎ ‎0.15‎ ‎0.10‎ ‎0.05‎ 调查的200名续保人的平均保费为 ‎0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.‎ 因此,续保人本年度平均保费的估计值为1.192 5a.‎ K2 古典概型 ‎3.K2[2016·全国卷Ⅰ] 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(  )‎ A. B. C. D. ‎3.C [解析] 从4种颜色的花中任选2种种在一个花坛中,余下2种种在另一个花坛中,有6种种法,其中红色和紫色的花在一个花坛的种法有2种,故所求概率P==.‎ ‎5.K2[2016·全国卷Ⅲ] 小敏打开计算机时,忘记了开机密码的前两位,只记得第一位 是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(  )‎ A. B. C. D. ‎5.C [解析] 由古典概型公式得所求概率P==.‎ ‎6.J2,K2[2016·北京卷] 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(  )‎ A. B. C. D. ‎6.B [解析] 甲被选中的概率为=.‎ ‎7.K2、K4[2016·江苏卷] 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.‎ ‎7. [解析] 本题为古典概型,基本事件共有36个,点数之和大于等于10的有(4,6),(5,5),(5,6),(6,6),(6,5),(6,4),共计6个基本事件,故点数之和小于10的有30个基本事件,所求概率为.‎ ‎11.K2[2016·上海卷] 某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为________.‎ ‎11. [解析] 将四种水果每两种分为一组,有C=6(种)方法,则甲、乙两位同学各自所选的两种水果相同的概率为.‎ ‎13.J1,K2[2016·四川卷] 从2,3,8,9中任取两个不同的数字,分别记为a,b,则logab为整数的概率是________.‎ ‎13. [解析] 由题意可知,(a,b)可能的情况有(2,3),(2,8),(2,9),(3,2),(3,8),(3,9),(8,2),(8,3),(8,9),(9,2),(9,3),(9,8),共12种情况,其中只有(2,8),(3,9)满足题意,故所求概率为=.‎ ‎16.K2[2016·山东卷] 某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图14所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:‎ ‎①若xy≤3,则奖励玩具一个;‎ ‎②若xy≥8,则奖励水杯一个;‎ ‎③其余情况奖励饮料一瓶.‎ 假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.‎ ‎(1)求小亮获得玩具的概率;‎ ‎(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.‎ 图14‎ ‎16.解:用数对(x,y)表示儿童参加活动时先后记录的数,则基本事件空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.‎ 因为S中元素的个数是4×4=16,‎ 所以基本事件总数n=16.‎ ‎(1)记“xy≤3”为事件A,‎ 则事件A包含的基本事件共5个,即(1,1),(1,2),(1,3),(2,1),(3,1),‎ 所以P(A)=,即小亮获得玩具的概率为.‎ ‎(2)记“xy≥8”为事件B,“3,‎ 所以小亮获得水杯的概率大于获得饮料的概率.‎ ‎04[2016·浙江卷] “计数原理与概率”模块 ‎(1)已知(1+2x)4(1-x2)3=a0+a1x+a2x2+…+a10x10,求a2的值.‎ ‎(2)设袋中共有8个球,其中3个白球、5个红球,从袋中随机取出3个球,求至少有1个白球的概率.‎ 解:(1)因为(1+2x)4二项展开式的通项为C(2x)r,r=0,1,2,3,4.‎ ‎(1-x2)3二项展开式的通项为C(-x2)r,r=0,1,2,3.‎ 所以a2=C·22·C+C·C·(-1)=21.‎ ‎(2)从袋中取出3个球,总的取法有C=56(种);‎ 其中都是红球的取法有C=10(种).‎ 因此,从袋中取出3个球至少有1个白球的概率是 ‎1-=.‎ K3 几何概型 ‎8.K3[2016·全国卷Ⅱ] 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为(  )‎ A. B. C. D. ‎8.B [解析] 至少需要等待15秒才出现绿灯的概率为=.‎ K4 互斥事件有一个发生的概率 ‎2.K4[2016·天津卷] 甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为(  )‎ A. B. C. D. ‎2.A [解析] 甲不输的概率P=+=.‎ ‎7.K2、K4[2016·江苏卷] 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.‎ ‎7. [解析] 本题为古典概型,基本事件共有36个,点数之和大于等于10的有(4,6),(5,5),(5,6),(6,6),(6,5),(6,4),共计6个基本事件,故点数之和小于10的有30个基本事件,所求概率为.‎ ‎19.B1,I2,K4[2016·全国卷Ⅰ] 某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:‎ 图15‎ 记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.‎ ‎(1)若n=19,求y与x的函数解析式;‎ ‎(2)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;‎ ‎(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?‎ ‎19.解:(1)当x≤19时,y=3800;‎ 当x>19时,y=3800+500(x-19)=500x-5700.‎ 所以y与x的函数解析式为 y=(x∈N).‎ ‎(2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n的最小值为19.‎ ‎(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800元,20台的费用为4300元,10台的费用为4800元,因此这100台机器在购买易损零件上所需费用的平均数为 ×(3800×70+4300×20+4800×10)=4000(元).‎ 若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4000元,10台的费用为4500元,因此这100台机器在购买易损零件上所需费用的平均数为 ×(4000×90+4500×10)=4050(元).‎ 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.‎ K5 相互对立事件同时发生的概率 K6 离散型随机变量及其分布列 ‎18.K1,K6,K8[2016·全国卷Ⅱ] 某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:‎ 上年度出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎≥5‎ 保费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:‎ 出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎≥5‎ 频数 ‎60‎ ‎50‎ ‎30‎ ‎30‎ ‎20‎ ‎10‎ ‎(1)记A为事件“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;‎ ‎(2)记B为事件“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;‎ ‎(3)求续保人本年度平均保费的估计值.‎ ‎18.解:(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.‎ ‎(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.‎ ‎(3)由所给数据得 保费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 频率 ‎0.30‎ ‎0.25‎ ‎0.15‎ ‎0.15‎ ‎0.10‎ ‎0.05‎ 调查的200名续保人的平均保费为 ‎0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.‎ 因此,续保人本年度平均保费的估计值为1.192 5a.‎ K7 条件概率与事件的独立性 K8 离散型随机变量的数字特征与正态分布 ‎18.K1,K6,K8[2016·全国卷Ⅱ] 某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:‎ 上年度出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎≥5‎ 保费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:‎ 出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎≥5‎ 频数 ‎60‎ ‎50‎ ‎30‎ ‎30‎ ‎20‎ ‎10‎ ‎(1)记A为事件“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;‎ ‎(2)记B为事件“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;‎ ‎(3)求续保人本年度平均保费的估计值.‎ ‎18.解:(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.‎ ‎(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.‎ ‎(3)由所给数据得 保费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 频率 ‎0.30‎ ‎0.25‎ ‎0.15‎ ‎0.15‎ ‎0.10‎ ‎0.05‎ 调查的200名续保人的平均保费为 ‎0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.‎ 因此,续保人本年度平均保费的估计值为1.192 5a.‎ K9 单元综合 ‎3.[2016·运城期末]若m∈(4,7),则直线y=kx+k与圆x2+y2+mx+4=0至少有一个交点的概率是(  )‎ A. B. C. D. ‎3.B [解析] 直线y=kx+k即y=k(x+1),恒过定点M(-1,0),要使该直线与圆x2+y2+mx+4=0至少有一个交点,则点M必须在圆内或圆上,∴(-1)2+0-m+4≤0,解得m≥5①.∵x2+y2+mx+4=0表示圆,∴m2+0-16>0,解得m>4或m<-4②.综合①②得m≥5,又m∈(4,7),故所求概率P=.‎ ‎5.[2016·福州质检]在2015年全国青运会火炬传递活动中,有编号分别为1,2,3,4,5的5名火炬手,若从中任选2名,则选出的火炬手的编号相连的概率为(  )‎ A. B. C. D. ‎5.D [解析] 基本事件总数为10,分别是{1,2},{1,3},{1,4},{1, 5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},其中选出的火炬手的编号相连的有{1,2},{2,3},{3,4},{4,5},共4种,故选出的火炬手的编号相连的概率为.‎ ‎8.[2016·孝感六校期末] 设x∈{-1,1},y∈{-2,0,2},则以(x,y)为坐标的点落在不等式x+2y≥1所表示的平面区域内的概率为(  )‎ A. B. C. D. ‎8.C [解析] ∵x∈{-1,1},y∈{-2,0,2},∴对应的点的坐标为(-1,-2),(-1,0),(-1,2),(1,-2),(1,0),(1,2),共有6种结果.落在不等式x+2y≥1所表示的平面区域内的点(x,y)有:(-1,2),(1,2),(1,0),共3种结果.故所求概率P==.‎
查看更多

相关文章

您可能关注的文档