- 2021-06-30 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届一轮复习人教B版(文)8-6双曲线作业
课时作业48 双曲线 [基础达标] 一、选择题 1.[2019·山西联考]已知双曲线-=1(a>0,b>0)的焦距为4,渐近线方程为2x±y=0,则双曲线的方程为( ) A.-=1 B.-=1 C.-=1 D.-=1 解析:解法一 易知双曲线-(a>0,b>0)的焦点在x轴上,所以由渐近线方程为2x±y=0,得=2,因为双曲线的焦距为4,所以c=2,结合c2=a2+b2,可得a=2,b=4,所以双曲线的方程为-=1,故选A. 解法二 易知双曲线的焦点在x轴上,所以由渐近线方程为2x±y=0,可设双曲线的方程为x2-=λ(λ>0),即-=1,因为双曲线的焦距为4,所以c=2,所以λ+4λ=20,λ=4,所以双曲线的方程为-=1,故选A. 答案:A 2.[2019·山东潍坊模拟]已知双曲线-=1(a>0,b>0)的焦点到渐近线的距离为,且离心率为2,则该双曲线的实轴的长为( ) A.1 B. C.2 D.2 解析:由题意知双曲线的焦点(c,0)到渐近线bx-ay=0的距离为=b=,即c2-a2=3,又e==2,所以a=1,该双曲线的实轴的长为2a=2. 答案:C 3.[2018·全国卷Ⅲ]已知双曲线C:-=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为( ) A. B.2 C. D.2 解析:由题意,得e==,c2=a2+b2,得a2=b2.又因为a>0,b>0,所以a=b,渐近线方程为x±y=0,点(4,0)到渐近线的距离为=2.故选D. 答案:D 4.[2019·江西联考]已知双曲线C:-=1(a>0,b>0)的离心率为2,左,右焦点分别为F1,F2,点A在双曲线C上,若△AF1F2的周长为10a,则△AF1F2的面积为( ) A.2a2 B.a2 C.30a2 D.15a2 解析:由双曲线的对称性不妨设A在双曲线的右支上,由e==2,得c=2a,∴△AF1F2的周长为|AF1|+|AF2|+|F1F2|=|AF1|+|AF2|+4a,又△AF1F2的周长为10a,∴|AF1|+|AF2|=6a,又∵|AF1|-|AF2|=2a,∴|AF1|=4a,|AF2|=2a,在△AF1F2中,|F1F2|=4a, ∴cos∠F1AF2===. ∴sin∠F1AF2=,∴S△AF1F2=|AF1|·|AF2|·sin∠F1AF2=×4a×2a×=a2.故选B. 答案:B 5.[2019·南昌调研]已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,P为双曲线C上第二象限内一点,若直线y=x恰为线段PF2的垂直平分线,则双曲线C的离心率为( ) A. B. C. D. 解析:由题,结合图知,直线PF2的方程为y=-(x-c),设直线PF2与直线y=x的交点为N,易知N,又线段PF2的中点为N,故P,因为点P在双曲线C上,所以-=1,即5a2=c2,所以e==. 答案:C 二、填空题 6.已知双曲线-=1的一个焦点是(0,2),椭圆-=1的焦距等于4,则n=________. 解析:因为双曲线的焦点是(0,2),所以焦点在y轴上,所以双曲线的方程为-=1,即a2=-3m,b2=-m,所以c2=-3m-m=-4m=4,解得m=-1.所以椭圆方程为+x2=1,且n>0,椭圆的焦距为4,所以c2=n-1=4或1-n=4,解得n=5或-3(舍去). 答案:5 7.[2019·太原高三模拟]设P为双曲线-=1上一点,F1,F2分别是双曲线的左、右焦点,若|PF1|=2|PF2|,则cos∠PF2F1=________. 解析:∵|PF1|=2|PF2|,∴点P在双曲线的右支上, ∴|PF1|-|PF2|=2,∴|PF1|=4,|PF2|=2,又|F1F2|=4,∴由余弦定理得,cos∠PF2F1==-. 答案:- 8.[2019·益阳市,湘潭市高三调研]已知F为双曲线-=1(a>0,b >0)的左焦点,定点A为双曲线虚轴的一个端点,过F,A两点的直线与双曲线的一条渐近线在y轴右侧的交点为B,若=3,则此双曲线的离心率为________. 解析:F(-c,0),A(0,b),得直线AF:y=x+b.根据题意知,直线AF与渐近线y=x相交,联立得消去x得,yB=.由=3,得yB=4b,所以=4b,化简得3c=4a,离心率e=. 答案: 三、解答题 9.若双曲线E:-y2=1(a>0)的离心率等于,直线y=kx-1与双曲线E的右支交于A,B两点. (1)求k的取值范围; (2)若|AB|=6,求k的值. 解析:(1)由得 故双曲线E的方程为x2-y2=1. 设A(x1,y1),B(x2,y2), 由 得(1-k2)x2+2kx-2=0.① ∵直线与双曲线右支交于A,B两点, 故 即所以1<k<. 故k的取值范围为(1,). (2)由①得x1+x2=,x1x2=, ∴|AB|=· =2=6, 整理得28k4-55k2+25=0, ∴k2=或k2=.又1<k<,∴k=. 10.已知椭圆C1的方程为+y2=1,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点,O 为坐标原点. (1)求双曲线C2的方程; (2)若直线l:y=kx+与双曲线C2恒有两个不同的交点A和B,且·>2,求k的取值范围. 解析:(1)设双曲线C2的方程为-=1(a>0,b>0), 则a2=4-1=3,c2=4,再由a2+b2=c2,得b2=1, 故双曲线C2的方程为-y2=1. (2)将y=kx+代入-y2=1, 得(1-3k2)x2-6kx-9=0. 由直线l与双曲线C2交于不同的两点, 得 ∴k2<1且k2≠.① 设A(x1,y1),B(x2,y2), 则x1+x2=,x1x2=. ∴x1x2+y1y2=x1x2+(kx1+)(kx2+) =(k2+1)x1x2+k(x1+x2)+2 =. 又∵·>2,即x1x2+y1y2>2, ∴>2,即>0, 解得查看更多