2019年高考数学总复习检测第57讲 直线与圆、圆与圆的位置关系

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2019年高考数学总复习检测第57讲 直线与圆、圆与圆的位置关系

第57讲 直线与圆、圆与圆的位置关系 ‎  ‎ ‎1.圆x2+y2=1与直线y=kx+2没有公共点的充要条件是(C)‎ A.k∈(-,)‎ B.k∈(-∞,-)∪(,+∞)‎ C.k∈(-,)‎ D.k∈(-∞,-)∪(,+∞)‎ ‎   因为直线方程的一般式为kx-y+2=0,‎ 由d=>1,得k∈(-,).‎ ‎2.在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为(B)‎ A. 5 B.10 C. 15 D.20 ‎ 最长弦为圆的直径2,最短弦为垂直于过(0,1)点和圆心的直径的弦,圆心(1,3)与点(0,1)的距离为=,所以最短弦长为2=2.‎ 所以四边形ABCD的面积为×2××2=10.‎ ‎3.(2015·重庆卷)已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=(C)‎ A.2 B.4 C.6 D.2 ‎ 由于直线x+ay-1=0是圆C:x2+y2-4x-2y+1=0的对称轴,所以圆心C(2,1)在直线x+ay-1=0上,‎ 所以2+a-1=0,所以a=-1,所以A(-4,-1).‎ 所以|AC|2=36+4=40.又r=2,‎ 所以|AB|2=40-4=36,所以|AB|=6.‎ ‎4.(2016·山东卷)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是(B)‎ A.内切 B.相交 C.外切 D.相离 ‎ (方法一)由得两交点为 ‎(0,0),(-a,a).‎ 因为圆M截直线所得线段的长度为2,‎ 所以=2.又a>0,所以a=2.‎ 所以圆M的方程为x2+y2-4y=0,即x2+(y-2)2=4,圆心M(0,2),半径r1=2.‎ 又圆N:(x-1)2+(y-1)2=1,圆心N(1,1),半径r2=1,‎ 所以|MN|==.‎ 因为r1-r2=1,r1+r2=3,1<|MN|<3,所以两圆相交.‎ ‎(方法二)因为x2+y2-2ay=0(a>0)⇔x2+(y-a)2=a2(a>0),‎ 所以M(0,a),r1=a.依题意,有=,解得a=2.‎ 以下同方法一.‎ ‎5.将圆x2+y2=1沿x轴正向平移1个单位后得到圆C,则圆C的方程是 (x-1)2+y2=1 ,若过点(3,0)的直线l和圆C相切,则直线l的斜率为 ± .‎ ‎ 将圆x2+y2=1沿x轴正向平移1个单位,将方程中x换为x-1,得到圆C的方程为(x-1)2+y2=1,设直线l的方程为y=k(x-3),‎ 由d==1得k=±.‎ ‎6.(2016·新课标卷Ⅲ)已知直线l:x-y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则|CD|= 4 .‎ ‎ 如图所示,‎ 因为直线AB的方程为x-y+6=0,‎ 所以kAB=,所以∠BPD=30°,从而∠BDP=60°.‎ 在Rt△BOD中,因为|OB|=2,所以|OD|=2.‎ 取AB的中点H,连接OH,则OH⊥AB,‎ 所以OH为直角梯形ABDC的中位线,‎ 所以|OC|=|OD|,所以|CD|=2|OD|=2×2=4.‎ ‎7.(2017·新课标卷Ⅲ)在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:‎ ‎(1)能否出现AC⊥BC的情况?说明理由.‎ ‎(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.‎ ‎ (1)不能出现AC⊥BC的情况.理由如下:‎ 设A(x1,0),B(x2,0),则x1,x2满足x2+mx-2=0,‎ 所以x1x2=-2.又点C的坐标为(0,1),‎ 故AC的斜率与BC的斜率之积为·=-,‎ 所以不能出现AC⊥BC的情况.‎ ‎(2)证明:BC的中点坐标为(,),可得BC的中垂线方程为y-=x2(x-).‎ 由(1)可得x1+x2=-m,‎ 所以AB的中垂线方程为x=-.‎ 联立 又x+mx2-2=0,可得 所以过A,B,C三点的圆的圆心坐标为(-,-),半径r=.‎ 故圆在y轴上截得的弦长为2 =3,‎ 即过A,B,C三点的圆在y轴上截得的弦长为定值.‎ ‎8.直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M、N两点,若|MN|≥2,则k的取值范围是(B)‎ A.[-,0] B.[-,]‎ C.[-,] D.[-,0]‎ ‎ 因为圆心(2,3)到直线y=kx+3的距离d=,‎ 所以|MN|=2=2≥2,‎ 解得3k2≤1,即k∈[-,].‎ ‎9.若两圆C1:x2+y2=1,C2:(x+4)2+(y-a)2=25相切,则实数a= ±2或0 .‎ ‎ 当两圆外切时,C1C2==5+1,‎ 所以a=±2;‎ 当两圆内切时,C1C2==5-1,所以a=0.‎ 所以a=±2或0.‎ ‎10.在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.‎ ‎(1)若圆C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;‎ ‎(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.‎ ‎ (1)由题意知,圆心C是直线y=2x-4和y=x-1的交点,解得C(3,2),‎ 于是切线的斜率必存在.‎ 设过A(0,3)的圆C的切线的方程为y=kx+3.‎ 由题意,得=1,解得k=0或k=-.‎ 故所求切线的方程为y=3或3x+4y-12=0.‎ ‎(2)因为圆心在直线y=2x-4上,则C(a,2(a-2)),‎ 所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.‎ 设点M(x,y),因为|MA|=2|MO|,‎ 所以=2.‎ 化简得x2+y2+2y-3=0,即x2+(y+1)2=4.‎ 所以点M在以D(0,-1)为圆心,半径为2的圆上.‎ 由题意知,点M(x,y)在圆C上,‎ 所以圆C与圆D有公共点,‎ 则|2-1|≤|CD|≤|2+1|,即1≤≤3,‎ 解得0≤a≤.‎ 所以圆心C的横坐标a的取值范围为[0,].‎
查看更多

相关文章

您可能关注的文档