- 2021-06-16 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学专题复习教案: 集合及其运算
集合及其运算 主标题:集合及其运算 副标题:为学生详细的分析集合及其运算的高考考点、命题方向以及规律总结。 关键词:集合,交集,并集,补集 难度:2 重要程度:4 考点剖析: 1.了解集合的含义、元素与集合的属于关系. 2.理解集合之间包含与相等的含义,能识别给定集合的子集. 3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. 4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集. 5.能使用韦恩(Venn)图表达集合的关系及运算. 命题方向:本部分在高考中常以选择题和填空题的形式出现,考查主要有:集合中元素的性质(确定性、互异性、无序性);元素与集合、集合与集合的关系. 规律总结: 1.一点提醒 求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.如第(3)题就是混淆了数集与点集. 2.两个防范 一是忽视元素的互异性,如(1); 二是运算不准确,尤其是运用数轴图示法时要特别注意端点是实心还是空心,如(6). 3.集合的运算性质:①A∪B=B⇔A⊆B;②A∩B=A⇔A⊆B;③A∪(∁UA)=U;④A∩(∁UA)=∅. 1.判断集合关系的方法有三种 (1)一一列举观察; (2)集合元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断集合关系; (3)数形结合法:利用数轴或Venn图. 2.解决集合的综合运算的方法 解决集合的综合运算时,一般先运算括号内的部分.当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算;当集合是用不等式形式表示时,可运用数轴求解. 3.数形结合思想 数轴和Venn图是进行交、并、补集运算的有力工具,数形结合是解集合问题的常用方法,解题时要先把集合中各种形 式的元素化简,使之明确化,尽可能地借助数轴、直角坐标系或Venn图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解题. 【知识梳理】 1.元素与集合 (1)集合中元素的三个特性:确定性、互异性、无序性. (2)集合中元素与集合的关系: 元素与集合之间的关系有属于和不属于两种,表示符号为∈和∉. (3)集合的表示法:列举法、描述法、Venn图. 2.集合间的基本关系 描述 关系 文字语言 符号语言 集合间的基本关系 子集 A中任意一元素均为B中的元素 A⊆B或B⊇A 真子集 A中任意一元素均为B中的元素,且B中至少有一个元素A中没有 AB或BA 相等 集合A与集合B中的所有元素都相同 A=B 3.集合的基本运算 集合的并集 集合的交集 集合的补集 符号表示 A∪B A∩B 若全集为U,则集合A的补集为∁UA 图形 表示 意义 {x|x∈A, 或x∈B} {x|x∈A, 且x∈B} {x|x∈U,且x∉A}查看更多